

Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond VA

Neal Mann

Neal Mann and Associates, Washington DC

Mihai (Mike) G. Pop, Dr. Eng. Areva College of Experts (Retired), Alexandria VA

30th International Conference on Nuclear Engineering (ICONE30) Kyoto International Conference Center, Kyoto, Japan, May 21-26, 2023

Molten Uranium Breeder Reactor (MUBR)

Key Characteristics

- Molten Uranium at 1475K
- Fuel type can be LEU or a mixture of UNF and LEU
- Breeding ratio of 1.25
- Majority of the fissions occur in the thermal range
- Fuel life of > 80 years
- Innovative control design

molten uranium fuel
 liquid heavy water
 heavy water steam
 molten tin coolant
 fission product vapor
 firebrick (structure)
 presurized helium

Reactor Core Configuration

A 36 fuel tube reactor Diameter of fuel tube ~ 30 cm

Top View

Side View

Unique Design Features of MUBR

- The fuel can be mostly LWR UNF
- Large fuel tubes, not fuel rods
- The fuel is circulating molten uranium metal
- Both the moderator and reactor are heavy water
- The reactor control is by negative feedback
- There is fission product removal from the circulating fuel

Patented Reactivity Control Method

Control cavities: closed at top, open at bottom.

Moderator steam bubble trapped at top of each cavity. —The moderator is heated by the fast neutrons.

Cool moderator is sprayed into the steam bubble.

Any imbalance in the energy flow changes the steam bubble size and displaces moderator between the cavity and the bottom reflector which is connected to the side and top reflectors.

Fuel Cycle Advantages

- The fuel can be mostly LWR UNF
- The fuel lasts 50 to 100 years with no refueling or fuel shuffling
- The burnup is over three times the initial fissile content
- The ending fuel has a higher fissile content than LWR UNF
- The need to mine and enrich uranium is greatly reduced

Small MUBR Design Parameters

Parameter	Value
Reactor Power (MWe/MWth)	130/266
Average Power Density (W/cm ³)	36
Fuel Cycle Length (Years)	~80 as minimum
Number of Fuel Tubes	14
Fuel Type	LEU or 64% LEU + 36% LWR UNF
Fuel Inlet/Outlet Temperature (K)	1480/1680
Moderator	Heavy Water
Moderator Temperature (K)	440
Cladding (fuel tube wall)	Silicon Carbide
Gas Cap	Helium

Analysis Toolset: MUBR6gen

MUBR Conceptual Core

 MCNP
 SCALE
 Δ keff

 1.00053±0.00014
 0.99955±0.00017
 0.00098

Department of Mechanical

& Nuclear Engineering

- A simplified conceptual core was used to compare MCNP and SCALE results
- This simplified core allowed for:
 - Easier comparison of MCNP and SCALE input
 - Faster running times
 - Easier implementation of burnup, filtering, and flux inputs
 - Several versions were created and refined to obtain a final design with a **98 pcm** difference between SCALE and MCNP

Flux Comparison – Thermal Flux

SCALE Thermal Flux

MCNP Thermal Flux

The thermal flux is high in the moderator and near the outside edges of the fuel tubes and very low in the large centers of the fuel tubes.

Flux Comparison – Intermediate Flux

MCNP Inter, Flux

The intermediate flux is relatively evenly distributed.

Flux Comparison – Fast Flux

The fast flux is almost uniformly high throughout the fuel tubes in the core but fades off rapidly in the moderator and is low in the moderator except near the fuel tube walls.

Flux Distribution Within the Tubes

252 Group Spectrum

MUBR Spectra at Different Components

MUBR Spectrum vs. Others

- PWR Pressurized Water Reactor
- SFR Sodium Fast Reactor

Department of Mechanical

& Nuclear Engineering

 HTGR – High Temperature Gas-cooled Reactor

19

Ongoing and Future Work

- Fission product evaporation and removal capability
- Fuel & moderator temperature coefficient calculations
- Fuel cycle and waste burning analysis

Department of Mechanica

& Nuclear Engineering

Questions?

Molten Uranium Breeder Reactor - a Paradigm Change in Fuel Cycle

30th International Conference on Nuclear Engineering (ICONE30) Kyoto International Conference Center, Kyoto, Japan, May 21-26, 2023

College of Engineering Mechanical and Nuclear Engineering