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Abstract: Probabilistic risk assessment (PRA) systematically assesses the risks posed to or by a 

complex system such as a nuclear power plant. Such systems are often comprised of physical structures, 

mechanical components, and humans that interact with or control the system or respond to system 

upsets. This complex interdependence leads to many sources of uncertainty that must be characterized 

in the PRA. This problem is exacerbated when exploring the impacts of external hazards (e.g., 

earthquakes, floods, and fires) on complex systems due to the additional need to understand and 

characterize the hazard and its impacts. This study defines a framework for identifying and categorizing 

the common sources of uncertainty encountered in performing external hazard PRAs for nuclear power 

plants. The framework may be more generally applicable to the assessment of a wide range of facilities 

involving potentially high consequence external hazard events. Commentary on drivers of uncertainty 

in external hazard PRA (XHPRA) (particularly within the context of external flooding hazards) and 

current gaps/challenges are also provided. 

 

1 INTRODUCTION 

Probabilistic risk assessment (PRA) (also referred to as probabilistic safety assessment [PSA]) is a 

systematic process used to estimate the risks posed to or by a complex system such as a nuclear power 

plant (NPP). A PRA provides insights that enable risk-informed decision-making and help 

owners,operators, and, in some industries, regulators to focus on risk-significant components of facility 

operations. It is widely accepted that uncertainty exists in all aspects of the operations of complex 

systems and all aspects of conducting a PRA. Therefore, the effective identification and communication 

of uncertainty are crucial components of robust risk-informed decision-making for complex systems. 

Understanding and categorizing the sources contributing to that uncertainty enables the 

characterization, quantification, and potential reduction of uncertainty. 

External hazards are potentially significant contributors to risk at NPPs. External hazards PRA 

(XHPRA) focuses on events that are external to typical plant system operations, such as floods and 

earthquakes. This risk contribution of external hazards is highly plant-specific due to the differences in 

hazards that affect various geographic regions as well as plant/site characteristics and configurations. 
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Like all PRAs, a key aspect of XHPRA is the appropriate identification, representation, and integration 

of uncertainties. 

This paper proposes a taxonomy for organizing and characterizing sources of uncertainties in XHPRA. 

This taxonomy was developed following an extensive literature review, organization of several 

workshop/conference panel sessions, and discussion with a diverse group of subject matter experts in 

nuclear power PRA and related applications. This paper focuses primarily on the presentation of the 

proposed taxonomy but offers selected examples and commentary that have benefited from those 

discussions. This work is part of a larger effort described in a companion paper presented at this 

conference [1] . 

2 TAXONOMIES OF UNCERTAINTY 

Uncertainty is defined differently in various contexts and disciplines. This conflict in definition leads 

to analysing and classifying uncertainty differently in various domains (or even to competing 

approaches within a domain). Under current practices and conventions in nuclear power PRA, the 

distinction is most often made between aleatory and epistemic uncertainties. Sui and Marble [2] observe 

this categorization has been "built into" many documents produced by the U.S. Nuclear Regulatory 

Commission (e.g., [3], [4]) as well as the ASME/ANS PRA Standard [5], which provides the consensus 

standard for performance of Level 1 and Large Early Release Frequency (LERF) PRAs for NPPs. 

The precise definitions of aleatory and epistemic uncertainty provided in various references may differ. 

However, it is generally recognized that aleatory uncertainty arises due to the inherent randomness in 

the properties or behavior of a system [6]. The “system” may refer to complex plant systems involving 

structures, components, and humans. For example, Zio and Pedroni [7] mention that aleatory 

uncertainty is associated with the occurrence of events that define various accident scenarios, the time 

when a component fails, the random changes of physical dimensions, and the variation of material 

properties of a component. However, the “system” may also describe natural and human-induced 

processes associated with hazards (e.g.,[8]). 

Epistemic uncertainty arises due to the lack of knowledge and information about various phenomena 

and the behaviors of a process, system, or model. From a Bayesian perspective, one can interpret 

epistemic uncertainties as the degree of belief analysts have regarding the validity and the capability of 

the constituent components of the PRA. For example, it may refer to beliefs about to what extent the 

PRA model reflects the plant design and how well it predicts the plant response to hypothetical accidents 

[9] and other events. Unlike aleatory uncertainty, epistemic uncertainty is considered reducible since it 

can be minimized or decreased by gaining additional knowledge and information about a process or 

system. 

In the 1980s, Vesely and Rasmuson [10] further broke down epistemic uncertainty into model 

uncertainty, parameter uncertainty, and completeness uncertainty (see Figure 1). This categorization 

continues to be prevalent in many NPP PRA-focused documents (e.g., [11]). Model uncertainty arises 

when several competing models or modeling approaches can be used to represent an aspect of the PRA 

model. Modeling uncertainty may also arise due to the differences between a model's prediction and 

reality (e.g., due to simplifications inherent in models). Parameter uncertainty is associated with input 

parameter values used to quantify the frequencies and probabilities for PRA events, such as failure rates 

and human error probabilities. Parameter uncertainty is generally conditioned on a specific model. 

Completeness uncertainty relates to factors that are not addressed or accounted for in the PRA model, 

including those factors that are recognized ("known unknowns") and not recognized ("unknown 

unknowns") [11]. 

While NPP PRA practitioners are likely well-versed in using this paradigm of aleatory and epistemic 

uncertainties [12], varying conventions across fields yield different categorizations. Existing works 

have summarized or developed uncertainty taxonomies from the perspective of topics as diverse as 

economics [13], digital humanities [14], executive management [15], ecology/biology [16], healthcare 
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[17], infrastructure systems [18], and structural reliability [12]. For example, from the perspective of 

ecology/biology, Regan et al. [16] distinguish between epistemic uncertainties arising from knowledge 

of the state of the system (e.g., limitations in measurement devices, insufficient data, extrapolations) 

and linguistic uncertainty associated with language (e.g., vague or unspecific language). Interestingly, 

Regan, et al. place natural variation (e.g., changes in a system with time) and inherent randomness under 

epistemic uncertainty. Inherent randomness is classified as epistemic under the premise that processes 

only appear random because we do not have enough information to define the underlying system or 

process fully. Han, et al. [17] discuss sources of uncertainty in healthcare, labeling sources as probability 

(indeterminacy of future outcomes), ambiguity (insufficient evidence or expert disagreement), and 

complexity. 

Even when taxonomies are somewhat consistent, terminology may differ between disciplines. For 

example, Dequech [15] notes that aleatory uncertainty has, in some applications, been referred to as 

ontological uncertainty. Even within the somewhat narrow field of PRA, differences in terminology 

have been observed. For example, Vesely and Rasmuson [10] referred to physical variability and 

knowledge uncertainty rather than aleatory and epistemic uncertainty, respectively [19]. A National 

Aeronautics and Space Administration (NASA) PRA procedures guide refers to inherent uncertainty 

(aleatory uncertainty) and model error (epistemic uncertainty) [20]. 

Despite the several definitions of uncertainty, probability is a recurring theme in uncertainty analysis 

[13][21][22]. To quantify uncertainty, probability and statistical analysis have been used by analysts of 

all disciplines. Due to the varied definitions and specificities, a unified taxonomy for uncertainty does 

not exist [17]. Moreover, uncertainty classification depends on the problem being addressed and the 

PRA model being used [12]. 

Figure 1: Uncertainty taxonomy frequently employed in conjunction with NPP PRA 

 

 

3 PROPOSED TAXONOMY OF UNCERTAINTY IN XHPRA FOR NPPS 

We will likewise refer to aleatory and epistemic uncertainties. However, we propose that it is 

conceptually and organizationally advantageous to first distinguish between the various uncertainties 

associated with XHPRA using the structure shown in Figure 2. The left panel of Figure 2 identifies the 

uncertainties associated with the physical/mechanistic processes involved in the progression of an 

external hazard event affecting an NPP (or other critical infrastructure). The left panel is intended to 

reflect uncertainties associated with the progression of an event "in the physical world," and it is 

intentionally separated from how these events are modeled within the PRA (represented by the right 

panel of Figure 2). In Figure 2, the central elements of an XHPRA are shown by the blue boxes, while 

the constituent factors contributing to uncertainty (from the perspective of both the physical world and 

PRA representation) are shown by the white boxes connected to each blue box. The distinction 

represented by the two panels in Figure 2 is conceptually consistent with the categorization and 

language initially used by Vesely and Rasmuson [10] in the 1980s, which distinguishes between 

physical variability and knowledge uncertainty. 

 

Figure 2: Proposed uncertainty taxonomy of external hazard PRA 
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Figure 3: Proposed uncertainty taxonomy of external hazard PRA 

 

Each element shown in the left panel is associated with uncertainties, which are primarily aleatory 

because the occurrence and characteristics of hazard events, their impacts, and event progressions will 

be inherently stochastic. The right panel of Figure 2 depicts the model elements used to reflect this 

uncertainty within the PRA – typically modeled as frequencies or probabilities. The PRA modeling 

strategies reflect an attempt to use knowledge and expertise to characterize the (primarily aleatory) 
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uncertainty associated with the physical/mechanistic processes involved in external hazard event 

progression.  

PRA modeling elements are inherently associated with epistemic uncertainty. Epistemic uncertainty 

arises from different technically defensible interpretations of data, models, and methods [23], as well 

as the expert judgment and choices that may be used to supplement the relatively limited data available 

for severe external hazard events in general and their impacts on NPPs. The complex physical processes 

involved in hazard events (in terms of the physical phenomena, the physical loads imposed on plant 

structures, systems, and components [SSCs], as well as their impact on humans) create challenges in 

developing realistic models. In addition, modeling within the PRA may be affected by resource 

limitations, practical considerations related to retaining insights while limiting model size, and the 

experiences and beliefs of the analyst (or a group of analysts) regarding the plausibility of certain 

events/conditions and their views regarding the feasibility and reliability of structures, equipment, 

humans, and the overarching organization.  

Each of the elements of Figure 2 is further described below. 

3.1 External Hazards 

The top box of Figure 2 identifies five primary factors associated with hazard mechanistic and physical 

processes uncertainty: (1) hazard occurrence, (2) severity, (3) timing, (4) spatial distribution, and (5) 

concurrent conditions. 

External hazards are associated with uncertainty, first and foremost, in their occurrence and their 

severity. The occurrence of a hazard may refer to the overall physical phenomena (e.g., the occurrence 

of an earthquake, hurricane, dam failure, or severe mesocyclone) or the hazard mechanisms (e.g., 

ground motion, storm surge, straight winds).  There are measures of severity associated with the 

physical phenomena event itself (e.g., the magnitude of an earthquake or the category of a hurricane or 

tornado) as well as the severity of the hazard effects experienced at the plant (e.g., the intensity of 

ground shaking, windspeeds, and flood elevations). The nature of these hazards may change over time. 

For example, hazards associated with external floods and high winds may exhibit nonstationary 

behavior due to climate change. Furthermore, land use and land cover changes in the upstream 

watershed will affect flood heights. 

Hazard events are also temporally and spatially dynamic. The timing and temporal progression of a 

hazard event (e.g., warning time and event duration) is a potentially substantial source of uncertainty 

and often not fully characterized probabilistically as part of hazard assessments. The severity and 

characteristics of hazards may differ across the site. For example, the ground shaking at a site may vary 

at different locations across the site [24]–[26] and within various structures. Likewise, flood elevations 

and wave effects may differ depending on topology and structures' orientation relative to winds. Site 

operations and changes may also affect the severity of hazards (e.g., installation of security features 

may alter site drainage). While hazard assessments often focus on primary measures of hazard severity 

(e.g., flood elevation), other associated effects can be relevant to characterizing the hazard demands 

(e.g., debris carried by water or wind, which may impact or clog systems). 

Finally, uncertainties exist regarding concurrent and compounding conditions that may prevail during 

a hazard event. This can range from factors such as the antecedent soil moisture affecting infiltration 

during a precipitation event to the possibility of concurrence of consequent, correlated, or independent 

hazards [27]. Naturally, consideration of multiple hazards adds more complexity to the analysis. 

Furthermore, the currently siloed approach for different types of XHPRAs (e.g., seismic, wind, flood) 

separates the analysis of different hazards and may miss the possibility of synergistic effects.  Currently, 

most existing resources focus on identifying and screening consequent, correlated and independent 

hazards. While a gap exists related to the comprehensive treatment of combined hazards, this is an 

active area of work.  
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The top right box of Figure 2 identifies three primary elements associated with hazard modeling within 

the PRA. Within the context of the XHPRA, the typical practice is to use probabilistic hazard 

assessment to develop hazard frequencies and site response/effects analyses to model local site effects 

(e.g., due to soil conditions, topology, site layout).. This uncertainty is generally presented as hazard 

curve(s) that provide the annual frequency (or annual exceedance probabilities) of a single measure of 

hazard severity (e.g., ground shaking, flood elevation, windspeed). More extensive multi-hazard 

assessments may result in the development of hazard surfaces. Issues related to data paucity give rise 

to epistemic uncertainty in performing hazard assessments, often reflected by alternate technically 

defensible interpretations of data, models, and methods [28]. Epistemic uncertainty will yield 

alternative hazard curves/surfaces, each of which reflects a certain set of assumptions made in the 

analysis. Techniques such as logic trees [29] provide a strategy for weighting hazard curves by their 

judged technical validity. Following the hazard characterization, it is necessary to define hazard 

scenarios that identify how representative hazard events may “unfold” in terms of impacts on the plant.  

3.2 Structural and Component Performance 

The second left box of Figure 2 identifies three primary factors associated with mechanistic and physical 

processes uncertainty in the context of the performance of structures and components under hazard-

induced loads: hazard-induced failure mechanisms, failure modes, and failure effects. While the 

performance of passive structures is not typically a primary focus in internal events PRA, structures are 

acutely important in many XHPRA applications. For example, structures (e.g., berms and walls) may 

serve as protection against floodwater during flood events or projectiles during high-wind events. In 

addition, seismic events may cause structural failures that lead to the weakening, damage, or collapse 

of passive structures on plant equipment. 

As an external event progresses, loads imposed on structures or mechanical components may lead to 

failure (or otherwise degraded performance) in multiple ways. For example, flood protection barriers 

may become damaged due to overtopping, overturning, or leakage. In turn, this damage can allow water 

to infiltrate into protected areas, leading to failure of equipment due to, for example, direct inundation 

or splashing. It is noted that while Figure 2 uses the language of “failure,” structural performance can 

result in damage along a severity continuum (e.g., from light to severe damage). 

In the context of modeling structures and components performance within the PRA, failure modes, 

mechanisms, and effects are identified using a range of tools and expert judgments. Then fragility 

assessments are performed to generate fragility functions representing the aleatory uncertainty 

associated with damage or failure by representing the conditional probability of a damaged state (or 

greater) as a function of the load(s) imposed by the hazard event. Fragility functions are typically 

generated using empirical data (from field observations or experiments), analytical models, expert 

judgment, or a combination thereof [30]. However, a lack of knowledge about whether, when, and how 

structure may fail as well as the consequences of those failures, may give rise to substantial uncertainties 

that manifest and may necessitate the consideration of alternate technically defensible fragility 

representations. 

This problem is particularly acute in the case of flooding events due to the limited experimental 

evidence available to inform the development of fragility functions. In addition, in the case of floods 

(as well as high winds), the dominant measure of hazard severity (e.g., flood elevation) may not reflect 

the full suite of loads that may cause structural failure. For example, flood-induced failure may be 

caused by scouring or erosion or the dynamic loads imposed by waves and debris. Moreover, the 

likelihood of damage failure and the consequences of those failures may be affected by the duration of 

time that a flood impinges upon a structure. 

3.3 Offsite Factors 

The third left box of Figure 2 identifies two primary offsite factors associated with mechanistic and 

physical process uncertainty: the status of offsite power (including the timing of offsite power losses) 

and regional effects. Loss of offsite power (LOOP) events are important contributors to plant risk [31]. 
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For example, external hazard-induced LOOP events could lead to a Station Blackout (SBO). The 

WASH-1400 Reactor Safety Study [32], [33] found that SBO could be one of the significant 

contributors to the overall risk from NPP accidents. Plant risk models have indicated that SBO 

contributes up to 70% or more to the overall core damage frequency (CDF), which means the likelihood 

of a LOOP, the probable time needed for restoration of offsite power, and the reliability of onsite 

emergency power sources are important inputs to plant PRA [34].  The likelihood of a LOOP will 

generally increase when a significant natural hazard event impacts the region surrounding an NPP. 

Regional effects may affect site access [35],  evacuation routes [36], and LOOP recovery times.  

Typically, within the XHPRA elements, these issues are characterized via the conditional probability 

of occurrence. In the most simple case, data is used to inform the estimation of the (conditional) 

probability of weather-induced LOOP events [37]. However, the conditions necessary to induce a 

LOOP at an NPP will also be impacted by the hazard severity, design of substations and surrounding 

transmission towers, and the number and locations of external power sources. More sophisticated 

models of hazard-induced LOOP may more explicitly consider the electrical grid/distribution network 

as a system. Research related to site access and impacts of events on evacuation remains an area of 

active study [38]. 

3.4 Initiating Events 

Initiating events refer to occurrences that can disrupt plant operations. The fourth box of Figure 2 

identifies two primary sources of uncertainty associated with initiating events: hazard-induced initiating 

event occurrence and the type/characteristics of the event. Initiating events may include LOOP (which 

depends on offsite factors), loss of plant functions (e.g., main feedwater, service water), or other 

accidents (e.g., loss of coolant accidents). Initiating events can occur randomly or be induced due to the 

external hazard (e.g., due to the failure of protective features and subsequent damage to plant 

components). For random occurrences, initiating events are typically characterized by the frequency of 

occurrence (e.g., number of events/year) [39]. However, within the context of the XHPRA, the 

likelihood of a random initiating event occurring during the period of the hazard event is likely to be 

dwarfed by the conditional probability of the hazard-induced initiating event.  

3.5 Plant Response 

The fifth left box of Figure 2 identifies three primary sources of uncertainty associated with plant 

response: (1) organizational response, (2) equipment response, and (3) human and human-equipment 

response. 

Organizational response is used herein to refer to the collective decisions and actions taken by the NPP 

operator. Peters et al. [40] note that “organizational factors encompass the organizational structure, 

processes, and behaviors that influence the actions of individuals at work” and may “ increase or 

decrease the likelihood of an accident or the severity of the consequences of an accident.” As such, 

Peters et al. [40] note that organizational factors may be a dominant contributor to plant risk. 

Organizational response is particularly relevant in response to external hazards because the availability 

of warning time leads to the development of strategies that may involve substantial human actions 

triggered by organizational decisions. For example, an organizational response may include decisions 

to shut down the plant, implement protective measures, and pre-stage equipment. Schneider et al. [41] 

outline challenges in treating manual actions within an external flooding PRA, noting the importance 

of the organization during external flooding events. Equipment response refers to the performance of 

equipment during the hazard event. While equipment may fail randomly, it may also fail as a result of 

the loads imposed by the hazard events (e.g., seismic loads or floodwater impingement as a result of 

flood protection failures). 

Human and human-equipment response refers to the performance of humans that execute actions inside 

and outside the main control room, almost all of which involve interaction between a human and 

equipment (e.g., control panels or equipment such as pumps and generators). Ex-control room manual 

actions may include preparatory actions (e.g., construction of temporary protective actions) and 
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response actions (e.g., actions to respond to accident conditions or other plant perturbations).Plant 

response in the PRA is first reflected in scenario definition and modeling. Scenarios begin with initial 

adverse plant conditions and progress through various possibilities regarding structural, equipment, and 

human/organization failures that may lead to adverse impacts on the plant. Initiating events could 

happen at various times, during multiple plant modes, and with varying levels of decay heat. Thus, 

event timing parameters need to be considered to develop hypothetical sequences and scenarios during 

external hazard events. These parameters include event warning time and the time at which the external 

hazard begins to affect the plant (which are likely defined as part of the hazard scenarios) as well as the 

failure time of the diesel generators and batteries, recovery time of the diesel generators, batteries, and 

offsite power grid, etc. The environmental factors and other prevailing conditions (internal and external 

to plant structures) that affect equipment and human response will be a function of the hazard event 

itself, the performance of structural and mechanical components, offsite factors, initiating events, and 

timing constraints caused by the event and organizational decisions. Extensive guidance is available for 

plant response modeling in general as well as for certain hazards (e.g., seismic PRAs). However, for 

other hazards (e.g., flood events), guidance is substantially limited.  

Plant response modeling in the PRA requires the qualitative identification of both human and equipment 

failure events. The likelihood of a scenario is quantified by considering component failure and human 

error probabilities (either due to random or hazard-conditional effects) as well as associated 

dependencies. These dependencies between equipment and/or human failures could be caused by (a) a 

common cause external hazard (e.g., earthquake), (b) functional dependencies, and (c) the dependencies 

between shared systems or resources. Operational/testing/experimental data and judgment is generally 

used to estimate equipment failure probabilities (e.g., failure to start and failure to run) either due to 

random causes or the hazard effects. 

Human reliability analysis (HRA) is the structured approach by which the probability of human failure 

events, and uncertainty associated with them, is estimated and characterized. The probability of human 

errors is a function of the time available versus the time required to perform actions as well as the 

various performance shaping factors that influence the scenario (e.g., environmental conditions, 

workload, and stress). Few methods are available to support HRA of ex-main control room actions or 

to comprehensively account for the impacts of hazard events that may increase the likelihood of poor 

judgment and performance (e.g., due to distractions, mental state/stress, physical demands, site 

accessibility, loss of instrumentation/control). 

4 ASSESSMENT OF PROPOSED UNCERTAINTY TAXONOMY 

Having outlined the proposed taxonomy in the section above, we next leverage the work of Nickerson 

et al. [42] (as likewise used by Reilly et al. [18]) in assessing this taxonomy. Nickerson et al. [42] 

identify that a useful taxonomy has the following characteristics: concise, robust, comprehensive, 

extendible, and explanatory. A taxonomy that is both concise and robust strikes a balance such that it 

has a sufficient number of elements to offer a clear distinction between them while not providing so 

many as to be unwieldy from the perspective of the user. A comprehensive taxonomy includes all 

elements of interest. Extendible taxonomies can be adapted as new elements appear. A taxonomy that 

is explanatory will provide insights regarding the nature of the elements under study. 

We propose that the structure in Figure 2, which first distinguishes between the “real world” and “PRA 

representation of the world” (thematically similar to the division used by [43]) and then further breaks 

down the various parallel constituent elements (hazard, structural performance, etc.) achieves these 

characteristics. First, in line with the goal of balancing robustness and conciseness as well as supporting 

explainability, we note that the proposed structure does not conflict with the classical approach used for 

external hazard PRA for NPPs, which typically breaks down the PRA into the hazard, fragility, and 

plant response technical elements [5]. However, consistent with ensuring robustness and 

comprehensiveness, the proposed structure provides more detail to account for essential considerations 

such as offsite factors, which are not explicitly included as technical elements under typical guidance. 

In addition, the proposed structure explicitly identifies factors such as organizational response, human 
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performance, and human-equipment response, which have been increasingly recognized as important 

sources of uncertainties in external hazard PRA. The structure can be easily expanded by increasing the 

factors (white boxes) associated with each central element (blue boxes) in Figure 2. The consistency in 

the language used in the proposed structure and typical nuclear PRA practice supports explainability 

within the nuclear field. However, this means that the language may require some adjustment before 

use in more general applications. 

5 CONCLUSION AND SUMMARY 

This paper proposes a taxonomy for organizing and categorizing sources of uncertainty that prevail in 

XHPRA. This taxonomy builds upon the insights gleaned from a survey of existing resources, 

engagement with subject matter experts, as well as the knowledge and experience of the project team. 

The overall taxonomy is introduced, and commentary is provided along with each constituent element. 

The taxonomy is judged to be valid and useful based on its being concise, robust, comprehensive, 

extendible, and explanatory attributes. 
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ABBREVIATIONS 

HRA  Human reliability analysis 

LOOP  Loss of offsite power 

NEUP  Nuclear Energy University Program 

PRA  Probabilistic Risk Assessment 

PSA  Probabilistic Safety Assessment and Analysis 

SSC  Structures, systems, and components 

SSHAC  Senior Seismic Hazard Analysis Committee 

XHPRA External Hazard PRA (probabilistic risk assessment) 
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