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Fuel Bowing in PWRs - Overview

Photo showing a
bowed fuel assembly

One of the major nuclear fuel performance issues
Widely observed in PWR operations
Few modeling work in the literature, especially with fuel rod bow
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A multiphysics phenomenon encompassing neutronics,
mechanics, and thermal hydraulics

e How do these parameter affect one another?
e Are there any feedback effects?
 What can we do to benefit operations?

A phenomenon known as lateral deflections from the normal positions
of the nuclear fuel structures during normal operating conditions, as a
result of reactor core thermal gradient, flow conditions, and
irradiation creep.

Franzen (2017), Evaluation of Fuel Assembly
Bow Penalty Peaking Factors for Ringhals 3

Roberts (1981), Structural Material in Nuclear Power Systems
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Fuel Rod vs. Assembly Bow - Differences

O Fuel rod vs. Assembly (GT+Grid+FR) o4 Bow Assembly Bow

 Axial loading: friction forces vs. i
hold-down forces

d Constrained between grids vs. top
and bottom tie-plates

d Bowing at each span between grids
with Max deflection at mid-span
elevations vs. bowing between tie-
plates with max deflections at grid T

elevations C-Shaped S-Shaped W-Shaped
15t Mode 2"d Mode 3rd Mode

A Schematic lllustration of Fuel Rod and Fuel
Assembly Bowing Configuration 5
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Fuel Rod vs. Assembly Bow - Similarities
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Top view

 Lateral deflections under compressive
axial loading

— 0 1 Time-dependent behavior involving
irradiation growth, creep, relaxation etc.

d Multiphysics phenomenon concerning

bow

ol R structural, thermal hydraulic, and
o neutronic aspects

Assembly Bow

Schematic illustration of fuel
rod and assembly bowing.
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~uel Structural Behavior
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Billerey (2004), “Evolution Of Fuel Rod
Support Under Irradiation — Impact on The
Mechanical Behavior of Fuel Assemblies,”
Proceedings of a Technical Meeting Held in
Cadarache, France
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Thermal Hydraulics Behavior

Circumferential Temperature Distribution

37-Rod Bundle Hex Lattice
- Monel sheathed epoxy rod
- Infrared pyrometer

Periodical temperature
distribution around the
circumference

- Lattice type

- Pitch-to-diameter (P/D)

More pronounced
in tight lattice

Central Channel
LE —

47

3 Normalized Rod Wall
o Temperature
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Krauss & Meyer (1998), “Experimental Investigation of Turbulent Transport 8

in a Heated Rod Bundle”, Nuclear Engineering and Design, 180: 185 - 206



Motivation and Objectives

O Difficulties in predicting the bowing behavior:
e Variations in core and fuel designs
* Lack of measurements
e Complicated operating conditions with various contributors/uncertainties
O Literature work:
* Focused primarily on thermal-hydraulics effects (e.g., CHF)
O Goals and benefits of this work:
e Capture more precise local effects
* Develop a framework that is applicable to similar issues
* Fundamental understanding on sensitivities/uncertainties of different factors
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Multiphysics Framework

O Three subjects affect one Peier
. Density Y
another, starting from a '
. (Flow, heat flux, - neutron flux,
StI’UCtU ral dEfOl’matlon, ten’]perature etc,) I::mn;.ler;:;rrr: " power EtC.}
Monte Carlo

forming a loop CFD

O Every two subjects | AT 1
. . ultiphysics
interact with each other ] e B Framework |
O How sensitive are these | Gatier sl [ ustration |

effects, and is there any
feedback effect? How
significant?

] Analytical, FEM
Currently focusing on

Structural-T/H
Interaction

—— Starts froma ——
deformation/displacement
(geometric perturbation) 10
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Thermal Hydraulics Modeling — CFD

Two-Rod CFD Model (ANSYS Fluent)

Rod-segments equal to :

\'A ¥ College of Engineering

Model Setup

Incompressible Newtonian flow
Steady-state, conjugate heat transfer
k-&turbulence model

Inlet temperature: 530 K

Inlet velocity: 2.35 m/s

Uniform volumetric heating rate:
372 W/cm3

Periodical boundary conditions
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FueI Rod Temperature Distribution

Approximately cosine-shaped
distribution (subtle, P/D = 1.32)

400

] 315 — Regular (a)
: L —— 50% gap closure (b)
- 6.533e+02 o 30 K — 90% gap ol
- 6.421e+02 °9— w0 | L gap closure (c)
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e T
5.412e+02 : ; L
5.300e+02 Circumferential Temperature Distribution
[K] As the rod displaces towards its neighboring rod,
Fuel Rod Temperature Contour temperature increases at the gap closure side, while
at Mid-span Elevation decreases at the opposite side, forming a thermal gradient

in the transverse direction that leads to further deformation.
12
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Neutronics Modeling — Monte Carlo

3X3 Rod Bundle Model (MCNP 6.2) Model Setup
Consider the center rod . -
Reflective boundary displaced towards Reflective boundary conditions
conditions neighboring rod e Water coolant

e Fresh Uranium 235 fuel

O O O * Neglecting cladding and gap
O OO
OO O

A slight increase of kg value is noticed at 90% gap closure,
Ok = 0.00040 with a standard deviation of 0.00017 .
Local effect in power distribution to be investigated.
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Summary

O A Multi-physics framework is proposed to the structural-T/H-neutronics
problem, particularly for the PWRs and may be extended to other
applications;

O A geometric perturbation by displacing a fuel rod in a square lattice is
considered, using CFD and Monte Carlo simulations;

O Fuel rod wall temperature increases as the flow area reduces, forming a

thermal gradient in the transverse direction. This can lead to further
deformation;

O Monte Carlo simulation suggests insignificant neutronics effect.

College of Engineering
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Future Work

Structural — Thermal Hydraulics:

O Understand the impact of single rod spacing to flow and temperature distribution

0 Understand the sensitivity of such impact and incorporate the deflections from
the structural model to check the feedback effect

Structural — Neutronics:

O Understand the impact of single rod spacing to power distribution, both in-plane
and axially

Thermal Hydraulics — Neutronics:

O Understand the impact of the temperature distribution on power re-distribution
(and vice versa)

Validation of modeling results:
U Experimental measurements that are available
O Alternative modeling results available in literature

College of Engineering
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Thermal
Hydraulics

(Flow, heat flux,
temperature etc.)
CFD

Multiphysics

Thermal Flow area Framework
Gradiert cooling illustration

Structural
(Fuel deformation)
Analytical, FEM

Neutronics
(Reactivity,
neutron flux,
power etc.)
Monte Carlo




	A Multiphysics Framework to Characterize Fuel Bowing Effects in PWRs
	U.S. Operating Nuclear Plants
	Fuel Bowing in PWRs - Overview
	Fuel Rod vs. Assembly Bow - Differences
	Fuel Rod vs. Assembly Bow - Similarities
	Fuel Structural Behavior 
	Thermal Hydraulics Behavior
	Motivation and Objectives
	Multiphysics Framework
	Thermal Hydraulics Modeling – CFD 
	Fuel Rod Temperature Distribution
	Neutronics Modeling – Monte Carlo
	Summary
	Future Work
	A Multiphysics Framework to Characterize Fuel Bowing Effects in PWRs

