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Physics-Informed Neural Networks (PINN)

• Solves two classes of problems:
1. Data-driven solution of PDEs (Forward approach)
2. Data-driven discovery of PDEs (Inverse approach)

• Provides framework for integrating observed data with 
theoretical models.

• Successfully applied to various domains:
Fluids, Quantum Mechanics, Power Systems, etc. 
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Ref.: M. Raissi et al., “Physics-informed neural networks: A deep learning framework for solving forward and inverse 
problems involving nonlinear partial differential equations,” Journal of Computational Physics, 378, pp. 686-707 (2019). 



Forward PINN Framework
The PINN approach uses the neural networks (NN) model to 
approximate the solution of PDEs:
• Considering a general non-linear differential operator: 

𝐹𝐹: = ℕ 𝑌𝑌 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛 = 0
• The solution can be approximated to a NN model: 

𝑌𝑌 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛 ≅ 𝑛𝑛𝑛𝑛𝑡𝑡_𝑌𝑌 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛
• Automatic differentiation (AD) can be used to differentiate the NN 

with respect to its input parameters. Thus the PDE model can be 
constructed as:

𝑛𝑛𝑛𝑛𝑛𝑛_𝐹𝐹: = ℕ 𝑛𝑛𝑛𝑛𝑛𝑛_𝑌𝑌 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛 ≅ 0
• The solution can be learnt by satisfying the above equations
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Forward PINN Framework (Cont.)
NN Training Procedure:
• Learnable parameters are learnt by 

minimizing a customized loss function.
• Loss function is defined as MSE between:

1. Predicted values of Y and the known 
values (e.g., BCs)

2. Predicted values of F and its exact value (0)

• Loss function is evaluated at a set of 
boundary points Nb and internal points Nf
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PINN Training Scheme
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Burgers’ Equation
• Time-dependent one-dimensional (1D) Burgers’ equation

𝐹𝐹: =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

+ 𝑢𝑢
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

−
0.01
𝜋𝜋

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

= 0

where x ϵ [-1, 1], t ϵ [0, 1], and the boundary and initial conditions are 
subject to

)𝑢𝑢(0, 𝑥𝑥) = −sin(𝜋𝜋𝜋𝜋
𝑢𝑢(𝑡𝑡, −1) = 𝑢𝑢(𝑡𝑡, 1) = 0
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PINN Applied to Burgers’ Equation
• The same NN structure and optimization algorithm 

recommended by Raissi was used
• The NN model used in this example has 9 hidden layers and 

each layer contains 20 neurons
• The hyperbolic tangent sigmoid transfer function is used as 

the threshold function for each activation connector in the 
network

• The loss function was minimized using the L-BFGS approach
• Analytic solution was used as reference solution
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PINN Solution to Burgers’ Equation
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A comparison between PINN and analytical u(t, x) at t = 0.25, 0.5, and
0.75, respectively.
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Loosely Coupled Reactor Model (LCRM)
• The model is based on the one-group two-

dimensional steady state diffusion equation:

• with zero-incoming fluxes are assumed for all 
boundary surfaces:
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Geometry of LCRM problem

𝐹𝐹 ≔ −𝛻𝛻 � 𝐷𝐷(𝑥𝑥, 𝑦𝑦)𝛻𝛻𝜙𝜙(𝑥𝑥, 𝑦𝑦) + 𝛴𝛴𝑎𝑎(𝑥𝑥, 𝑦𝑦)𝜙𝜙(𝑥𝑥, 𝑦𝑦) − 𝑆𝑆(𝑥𝑥, 𝑦𝑦) = 0

At the surface 𝑥𝑥 = 0:
1
4
𝜙𝜙(0, 𝑦𝑦) −

1
2
𝐷𝐷 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑥𝑥=0

= 0 Region Material 𝛴𝛴𝑎𝑎 (cm-1) 𝛴𝛴𝒔𝒔 (cm-1) S (n/cm3)

Core 0.062158 0.089302 0.01048083

Blanket 0.064256 0.094853 0.00214231



PINN Applied to LCRM

• The solution is approximated to: 𝜙𝜙(𝒙𝒙, 𝒚𝒚) ≈ 𝒏𝒏𝒏𝒏𝒏𝒏_𝜙𝜙(𝒙𝒙, 𝒚𝒚),
Where 𝒏𝒏𝒏𝒏𝒏𝒏_𝜙𝜙 is a NN model with a set of learnable parameters (w, b).

• 𝒏𝒏𝒏𝒏𝒏𝒏_𝜙𝜙 is differentiated according to the PDE model to construct 𝒏𝒏𝒏𝒏𝒏𝒏_𝑭𝑭
• Boundary conditions ( set of 4 ODEs) are satisfied by differentiating 

𝒏𝒏𝒏𝒏𝒏𝒏_𝜙𝜙 according to each ODE. 
• Learnable parameters (w, b) are learnt by minimizing loss function:
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More Implementation Details

• LHS strategy was used to generate training points
• The sigmoid transfer function was used for each 

activation connector in the network
• Adam optimizer was used to minimize the loss function
• A high-order FEM solution was used as a reference 

solution
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PINN Optimization
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    Neurons 
 

Layers 
10 20 40 

2 25.04 11.04 47.69 
4 11.24 5.15 1.56 
6 2.15 0.79 0.81 
8 1.2 0.96 0.73 

 

Mean relative error (%) between PINN prediction and the reference solution for different NN architectures with 
fixed Nf and Nb (Nf = 10000 and Nb = 25).

Mean relative error (%) between PINN prediction and the reference solution for Nf and Nb with fixed NN architecture 
(8 hidden layers and 40 neurons per layer). 

                 Nf 
    Nb 

2000 5000 10000 

25 1.06 0.72 0.73 
50 0.95 1.04 0.72 

100 1.39 0.82 0.69 
300 1.13 0.76 0.84 
1000 0.91 0.74 0.69 
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PINN Optimization (Cont.)

The optimum hyperparameters are shown below with mean
percentage relative error of 0.69% and maximum error of 6.9% in
flux solution

#hidden layers #neurons/layer Nf Nb/surface

8 40 10,000 100
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LCRM Results

19
PINN predicted flux distribution (a) and relative percentage 

error distribution compared to the FEM solution (b).

Predicted flux and percentage relative error 
along the diagonal line of the solution domain.



Non-uniform training points
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Relative 
percentage 

error

Uniform 
data

Non-
uniform 

data

mean 0.69% 0.63%

Std. 0.74 0.59

max 6.9% 4.6%
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k-eigenvalue Problems

• Why it’s different?
 Parametric equation (unknown k)
 Homogenous (Direct minimization of f results in 𝜙𝜙 𝑥𝑥, 𝑦𝑦 = 𝟎𝟎

• Proposed approach:
 Additional learnable parameter (approximate k)
 Regularization term in the loss function (enforces a pre-defined value for the 

flux integration)
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𝒇𝒇 ≔
𝟏𝟏
𝒌𝒌
𝝂𝝂𝜮𝜮𝒇𝒇 𝒙𝒙, 𝒚𝒚 𝝓𝝓 𝒙𝒙, 𝒚𝒚 +

𝛛𝛛
𝛛𝛛𝒙𝒙

𝑫𝑫
𝛛𝛛𝝓𝝓
𝛛𝛛𝒙𝒙

+
𝛛𝛛
𝛛𝛛𝒚𝒚

𝑫𝑫
𝛛𝛛𝝓𝝓
𝛛𝛛𝒚𝒚

− 𝜮𝜮𝒂𝒂 𝒙𝒙, 𝒚𝒚 𝝓𝝓 𝒙𝒙, 𝒚𝒚 = 𝟎𝟎



Conclusions
• Advantages:

1. Obtain mesh-free solutions
2. No large amount of training data needed ahead
3. Achieve the same level of accuracy as conventional methods.
4. Manpower efforts for the PINN can be significantly reduced.
5. Easily applied to  complex geometries and versatile BCs.
6. Prior knowledge of high-gradient regions can enhance accuracy 

• Challenges:
1. Computational complexity
2. Applications to higher dimensionality problems.
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Thank You!
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