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Motivation

* The understanding of time-dependent behavior of neutron population in a nuclear
reactor is of critical importance to the safe operation of nuclear reactors.

« The neutron adjoint diffusion equation could be used for kinetics parameter
calculations or in perturbation theory for the sensitivity analysis.

 However, partly due to exaggerated computation cost, the time-dependent adjoint
equation is rarely solved.

* The typical practice is to solve the steady state adjoint equation and use the
fundamental mode adjoint function as an approximation for all other dynamic states.

* A generalized temporal and spatial boundary conditions for the adjoint models are
considered.
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Time-dependent Two-Group Diffusion Equations

f
1 d 0
" 511 Y [Dl( , t) o ]+2r1¢1(x ) =(1—B)[vEr1d:1(x,t) + vZr 20, (x,t)] + z/lka(x t)
1 d 9]
| v, ;l;z ax[ 2(x,t) 0 ]+Za2qb2(x t) = Zs152(x, )1 (x, 1)
aCk(x, t)

= ﬁk[VZf1¢1 + V2f2¢2] — Ak Cr (x, t) k=1,-,K.
\ Jt

« The reflective boundary conditions (B.C.) and a prescribed initial condition (I.C.) :

0py(x,t) dpy(x,t)

77 lx=0=0, and g l=1=0

.C..  ¢y(x,0) = ¢go(x)

B.C.:

» For the delayed neutron precursor (DNP) equations, the initial conditions can be defined
similarly :

Ck(x, 0) = CkO(X), k = 1,"',K.
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Derivation of adjoint
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Derivation of adjoint
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Adjoint Diffusion Equations

([ 1a¢: 0 Ip? * * * *
_V_1 P D, (x, t)g + 201910, t) = (1 = B)vEr 11 (x, t) + 25 1202(x, ) + Brv2e Cp (%, T)
< TV, 9t ox D, (x,t) Erol Za2(x, )Py = (1 = L)v2¢1(x, t) + BrvZp G (%, t)
K
9C:(x, ) *
ST = ) A 9300 6) = 4G 1) k=1,,K.
\ k=1

« The reflective boundary conditions (B.C.) and the final condition (F.C.) :

g.c. 2P0 _ 0, and 06 Of - _ 0,
ox | ._, ox | ._,
FC: i T) = dlo(x) (;pg(‘;(’%
g )

« For the delayed neutron precursor (DNP) equations, the final conditions can be defined similarly:

C (x,0) s Cro(X)
o) - ey

Cr(x,T) = C;(x,0) k=1,-- K.
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Summary of the Governing Equations

« Forward Diffusion Equations

f K
10 d 0
o (;il - = [D1 (x,t) %‘ + 210100 t) = (1= B)[vEp 11 (6, 1) + vIp 2o (x, t)] + ;Akc‘k (%, £)

10 9, 0
) — ¢2 — [Dz (x, t) % + Za,2¢2 (X, t) = Zs,l—>2 (X, t)¢1 (X, t)

VZ at 6x
aCk(X, t)
\ = BelvErdy +vEd] - MG t) k=1, K.

« Adjoint Diffusion Equations
([ 109¢; 0 dp; ) * * *
V. 9t 0 Di(x,t) = | + 25 1P1(x, t) = (L — B)v2r 11 (x, t) + 25 1205(x, ) + v Cp (%, 1)
1 X 0x

10¢; 0 0, . \ '
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Numerical Methods

 Time Discretization (Semi-implicit Method)
e Uniform time step: 0.5 s.

« Space Discretization (Finite Difference Method)
e Mesh size: 1 cm.

 |terative approach for the flux solver
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lterative Strategy for the Flux Solver

The power iteration method is used to solve for the time-dependent diffusion equations.
Here we take the forward equation as example to illustrate the iterative procedures:

f

K
0 ™ 1
- [D{l(x) %] + [z,ttloc) VT mvz;tl(x)] B = (1= B+ p)VEL ()0 + 1= ) G @)(1— e M) + ST (x)
n " k=1
1

Vo At,

0 0Py
s |pr e 2 + 20 +

]d)? = 28152 (0 @7 + 57 (x)

-5 At
v14ty K 1—-e ke
and Vn = — B 1-—
n k=1Pk l Atn Ak

b,
$200) = o

The DNP concentration at time step n :

n n—-1 —ApAt 'Bk(]‘ B e_AkAtn) n n n n
Ci (x) = G~ (x)e™"k7in + . [VZF ()T +vEF, ()97 ]
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Improve the Flux Solver by Removing the Iterations

» To reduce the computational cost and improve the computation efficiency, we
eliminated the iteration algorithm to improve the flux solver.

* The time-dependent two-group forward diffusion equations are described in matrix
form as follows :

B, C, 0 .. 0 = 0 . . 0
A&J 822 (:23 E 0 E22 :
O /¥2 E%B C33 : E33
Where, , , : , :
AN*l,N*Z BNfl,Nfil CNfl,N ENfl,Nfl 0
ol O 0 Ains  Byn 0 0 Exn
By 0 0 Buinia  Cninez 0 0
0 EN+2,1 AN+2,N+1 BN+2,N+2 CN+2,N-¢-3 :
EN+3,1 0 AN+3,N+2 BN+3,N+3 CN +3,N+4
. 0
EZN*I,Nfl 0 A2N71,2N72 BZNfl,ZNfl C2N71,2N
0 0 EZN,ZN 0 0 AZN,ZN—I B2N,2N

2Nx2N

T
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Rod-ejection Test Problem

A rod-ejection accident in a one-dimensional reactor problem is considered as a test
problem to demonstrate the applicability and validation of the presented method [5].

ot e oo « Three regions: reflector, unrodded fuel, and rodded

i fuel.

« During the rod-ejection accident, the control rod is
assumed to be withdrawn from 0 s to 4.0 s with a
speed of 25cm/s.

25¢cm

150 cm

[ ] Reflector o
7 unrodded « Later the control rod is inserted from 4.0 sto 10.0 s

T with the same constant speed. Uniform time step
which is 0.5s are considered in this problem.

100 cm

!
25cm
v

Geometry of the one-dimensional reactor

W,

<
"

1 >
£
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Rod-ejection Test Problem

Table 1. Material Properties [5].

- eowpl | Gowp2
B "0 saem) ) Saa(em)  Dlem)  Zlem™) v emh)
140343  117659e-2  5.62285e-3  1.60795e-2  0.32886  1.07186e-1  1.45865e-1
1.40343  1.17659e-2  5.60285e-3  1.60795e-2  0.32886  1.07186e-1  1.45403e—1
093344  2.81676e-3 0 108805e-2  0.95793  8.87200e-2 0

Table 2. Delayed Neutron Precursor Parameters [5].

 Teows | aowe | cows | cows | cows | aowo

Br (=) 0.000247 0.0013845 0.001222 0.026455 0.000832 0.000169

A (1/s) 0.0127 0.0317 0.115 0.311 1.4 3.87
- v, =1.27x107cm /s v, =2.5x10°cm/s B, =0.0065
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Numerical Result

Before performing the time-dependent analysis, the steady state condition was
examined as a criticality calculation. The K_4 obtained at the initial time of the
reactor is 0.978821. This value agrees well with the result for the test problem in
Ref. [5]

For the dynamics behavior, the power changes of the slab reactor durina the rod-
ejection accident was calculated. —

181 —e—Ref[25] |

The normalized mean power was calculated by
using the formula:

N

= ~

~ o
T T

Normalized power (-)
3

J (511 @0+ 228 G0)av

P(t) =

D

jﬂ (Zf,l(x)d)l (x,0) + 25 (X) b, (x'o))dv T BT T
Elapsed time (s)

Normalized power evolution for the 1D reactor.
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Numerical Result

For transient behaviors, the following figures show the neutron flux distributions
and adjoint solutions at various times during the rod-ejection accident.
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Fast neutron flux (A) and thermal neutron flux (B). Fast adjoint solutions (A) and thermal adjoint solutions (B).
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Numerical Result

To better understand the physical meaning of the adjoint neutron flux, we assume
there is a neutron detector placed at the middle of the third cell of the reactor core.

The typical response R chosen is the reading of
detector which could be given by the reaction rate:

G
Detector R = Z Zd’g¢g(x, t), G =2
g=1
The adjoint source is defined as a delta function in this
problem. Then the adjoint equation with adjoint source
become:
|:| Reflector
[ 1 unrodded
B Rodded B 16(]53

0 09, * _
1% 2 [Dg (x,) a—j] F 5 500 8) = S+ Zag
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Numerical Result

The figure shows the adjoint solutions variation during the rod-ejection accident,
which represents the neutron importance distribution for the designated

detector response R.
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Conclusions and Future Work

A numerical approach to obtain the forward and adjoint solution of the time-dependent one-
dimensional two-group neutron diffusion model for the spatial reactor kinetics problems was
presented.

The generalized temporal and spatial boundary conditions for both the forward and adjoint
models are derived for application purposes

The numerical approaches are based on the finite difference method for the spatial
discretization and semi-implicit method for the temporal discretization

A rod-ejection accident in a one-dimensional model reactor problem is applied as a test
example to demonstrate the applicability of the presented method. The computational results of
the test problem demonstrate that the code is capable of outputting reasonably accurate
solutions.

In the future, the time-dependent adjoint solution will be used in the perturbation theory for
dynamics sensitivity analysis.
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