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Finite difference sweeping methods

Linear methods
» Step difference (SD)

* 1st-order upwind

* Positivity preserving

* Intermediate diffusion limit, Ax = 'h, where l = 1
» Diamond difference (DD)

e 2"dorder;

* Not positivity preserving

* Thick diffusion limit in interior homogeneous regions, [ = 0
» Step characteristic (SC)

* Weighted DD

« 2"dorder, but less accurate than DD for diffusive problems

* Positivity preserving

* Intermediate diffusion limit, [ = 0

Nonlinear methods

» LF-WENO methods (Wang 2019)
e High-order
* Very robust, but not positivity preserving. Can be made positive!
* Between thick and intermediate, [ = 1/k, where k is the order of spatial accuracy
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M-matrix and stability
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Diffusion limit of Sv—a recap
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Diffusion limit of SC (Wang, 2019)
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Proof (by contradiction).

 Ifl>1,thenay,; | 0asel 0, and thus SC tends to DD, whereas DD has [ = 0.

« Ifl<1,thenay; T1foru, >0,and a, ;I —1 for u, <0,as el 0. Thus, SC tends
to SD, but SD has [ = 1.
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Modified SC (mSC)
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Note: cl0: mSC — SC
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Diffusion limit of mSC (Wang, 2019)
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reverts to the DD scheme, and therefore it can attain the thick diffusion limit as
DD does.



How about positivity?
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Numerical results —accuracy

Scalar Flux L1 Error
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Scalar Flux

Numerical Result — robustness
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Numerical Result — diffusion limit

Scalar Flux
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Conclusions

* We proposed a modified step characteristic method,
called mSC, which can improve the accuracy of the
original SC scheme.

* The idea is that we have introduced a scaling factor,
1 — ¢F in the weighting a term of SC.

* The numerical results have demonstrated that the new
mSC scheme can preserve great robustness of the
original SC, and is much more accurate than SC and DD

as well.

* More importantly it can attain the thick diffusion limit,
which is of significant computational interest for thick
diffusive problems such as radiative transfer.
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