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INTRODUCTION 

Analytic techniques for one-dimensional (1D) 
transport problems can produce extremely accurate 
benchmark solutions with no spatial errors, which provide 
an efficient means to verify new proposed numerical 
spatial discretization approaches for transport method 
development. Furthermore, highly accurate 1D solutions 
can benefit the development of nodal transport methods 
which use the transverse integration approach to convert 
the multi-dimensional transport equation to a set of coupled 
1D ones [1]. Partly due to these reasons, the decades old 
problem, obtaining an analytic solution for the 1D 
monoenergetic Sn neutron transport equation in slab 
geometry, has been frequently visited by many researchers 
over the last few decades [1-5]. Most recently, Wang et al. 
proposed one solution to this problem based on some novel 
features from all the former approaches [6]. Wang’s 
approach employs an eigen-decomposition procedure of 
the transport-scattering operator in the Sn equation and 
takes advantage of the eigenvalues and eigenvectors 
yielded from the decomposition to generate the analytic 
solutions. This idea may bear some similarities to some 
former work [7, 8], and has the same essence as the analytic 
approach recently proposed by English and Wu [9]. The 
techniques used in these approaches to construct the flux 
solution are somehow all different. In Wang’s method [6], 
a closed form of the analytic solution is established in a 
neat expression that only has matrix-vector multiplications. 
This closed form provides substantial convenience and 
flexibility to generate analytic solution at any position of 
the problem. Moreover, numerical experiment shows it 
possesses superior efficiency by computing the solution 
with the closed form without invoking any intermediate 
processes. A brief review of Wang’s 1D analytic solution 
is presented in the next section. 

However, some application limitations were observed 
in Wang’s analytic solution presented in Ref. 6. For 
example, the solution only considers vacuum boundaries or 
arbitrary incident flux boundaries – the solution may 
require changes for reflective boundaries. Extension to 
high order of anisotropic scattering appears to be 
straightforward, whereas the original form is limited to the 
isotropic scattering cases only. Problems with void regions 
are excluded for ease of implementation. Moreover, the 
presentation is only focused on a one-region homogeneous 
problem. Although numerical experiments demonstrate the 

results for a multi-region problem, it was achieved through 
an iteration procedure. 

To remove these limitations and to fully realize the 
benefits of the closed form of the 1D analytic solution, this 
paper presents some recent efforts that substantially extend 
the applications of Wang’s 1D analytic solution to the Sn 
transport problem. These efforts make the new solution 
applicable to various conditions including heterogeneous 
situation, variety of boundary conditions, arbitrary order of 
scattering anisotropy, and void regions. In particular, the 
extended solution has removed the iteration procedure 
needed for heterogeneous problems, and replaced it with a 
direct method that solves a system of linear equations. 
Numerical results are provided at the end of the summary 
to verify the method implementations. 

WANG’S 1D SN ANALYTIC SOLUTION 

With standard notations, the monoenergetic Sn 
transport equation in slab geometry with homogeneous 
media and constant external neutron source is written as 
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where N is the order of quadrature set the Sn method. 
Standard Gaussian Legendre quadrature set was used in 
this work. L is the order of scattering anisotropy 
approximated for the angular differential scattering cross 
section, and ( )l xφ  is the angular flux moment defined as 
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Eq. may be written into a matrix-vector form 
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Note the constant source, Q, is incorporated into the vector 
b for simplicity and the matrix A has a size of N × N. 

For a slab with a size of X cm, the left and right 
boundary conditions (if non-reflective) can be generally 
described as follows, respectively 
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Here FM and gm are prescribed incident fluxes on the outer 
boundaries. For illustration, the configuration of the 
problem with known boundary conditions is depicted in 
Fig. 1. The meaning of the vectors shown in the figure is 
obvious. For example, the boundary conditions given in 
Eq.(6) are compactly represented by vector L

+ψ  and R
−ψ . 

Figure 1. Configuration of a 1D homogeneous slab. 

In general, the matrix A in Eq.(3) is diagonalizable and 
thus can be decomposed with the standard eigen-
decomposition procedure 

1−=A RΛR  , (7) 

where Λ is a diagonal matrix with diagonal elements 
corresponding to eigenvalues of A, R is a matrix with 
column vectors corresponding to the eigenvectors of A. 
With this decomposition, we re-write Eq.(3) as 

1( ) ( )d x x
dx

−+ =
ψ RΛR ψ b . (8) 

If we define a pseudo-angular flux vector 
1−=φ R ψ , (9) 

we can rewrite Eq.(8) as 
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x
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Because Λ is a diagonal matrix, we can easily obtain the 
analytic solution of Eq.(10), which is essentially a system 
of ODEs. This solution can then be reverted back to the 
desired flux solution using Eq. (9). This is how the closed 
form of Wang’s analytic solution obtained. The procedure 
involves a little bit algebraic arrangement, but the final 
solution is a very clean one shown as follows 
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where I is the identity matrix and 1 is a vector with all 
elements be one, the minus and plus superscript in angular 
fluxes stand for fluxes with positive and negative ordinates 
in the Sn equation. −Λ and +Λ are diagonal matrices with 
corresponding negative and positive eigenvalues. The 
undetermined vector T

R L
− +  φ φ appearing in the solution 

are the formal boundary values of the pseudo-fluxes. This 
vector, which can be determined by physical boundary 
conditions, makes the closed form solution interesting 
because it is the only unknown in the solution and the two 
elements contained in the vector (i.e., R

−φ  and L
+φ ) appears 

at different physical location of the problem (see Fig.1). 
This feature of the solution is later shown to provide great 
advantages on extending the solution to heterogeneous 
problems, as narrated in the next section. 

EXTENSIONS ON THE ANALYTIC SOLUTION 

A straightforward way to extend the analytic solution 
to a multi-region heterogeneous problem is to use the 
iterative method on the interfacial angular fluxes as they 
can be treated as incoming flux boundaries for the 
intermediate regions. The formula given in Eq. (11) can be 
used to solve the flux distribution in a region-by-region 
fashion. This iterative approach will become inefficient, 
particularly when the scattering ratios of some regions 
become large.  
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Here we present an alternative yet more efficient 
approach to handle the heterogeneous case without 
iterations on the interfacial fluxes. This approach takes 
advantage of the closed form solution and pre-calculates 
the sole unknowns (i.e., the vector T

R L
− +  φ φ ) appeared 

in the solution for each region. Along the procedure, the 
variety of boundary conditions and void regions can be 
incorporated naturally. For illustration, a two-region 
problem is shown in Fig. 2, where the unknown (i.e., the 
pseudo-flux vector) for each region is indicated with red 
color. 

Figure 2. Configuration for a two-region problem in slab. 

If separating each unknown vector into two parts, one 
can see there are really four unknowns in the two-region 
problem. Without loss of generality, we denote the four 
unknowns in an order as follows 
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By defining a source vector 
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the analytic solution expressed in Eq.(11) may be written 
into the following two equations 
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and 
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where 11R , 12R , 21R , and 22R are sub-matrices in R . 

At the left boundary (x = L in Fig. 2), if the incoming flux 
( L

+ψ ) is known, we set x = 0 in Eq.(14) and get 
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However, if the left boundary is reflective, we get 
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where T is a mirror reflective matrix that connects the 
positive and negative portion of the angular flux at the 
boundary 

L L
− +=ψ Tψ  . (17) 

The equations at the right boundary (x = R in Fig. 2) can be 
developed similarly. The resulting equations are outlined 
in Eq.(18) for a known incident boundary and Eq.(19) for 
a reflective one: 
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At the interface of the problem (x = I in Fig. 2), if we set x 
= XA to the analytic solution at Region A, and x = 0 to the 
analytic solution at Region B, we obtain the two sets of 
angular flux solution at the interface. Using the flux 
continuity condition at the interface, we obtain 
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and 
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Eq.(15) [or Eq.(16) for a reflective boundary], Eq.(20), 
Eq.(21), and Eq.(18) [or Eq.(19) for a reflective boundary] 
establish a system of linear equations with block-wise 
matrices as coefficients. The size of these block matrices 
or vectors is the half size of the quadrature set (i.e. N/2).  
We can solve for the four unknowns { 1φ , 2φ , 3φ , 4φ } 
simultaneously with these equations. If the problem has 
more intermediate regions, then the pair of equations 
similar to Eq.(20) and (21) will be repeated to incorporate 
more unknown vectors into the system of equations. Once 
these unknown vectors are resolved in each region, we can 
insert them to the analytic solution given in Eq.(11) to yield 
angular flux of any arbitrary position in any region. 

For a void region, the analytic solution is essentially 
reduced to the following form 
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where the eigenvector matrix R is really degraded to an 
identity matrix, which indicates the flux stays unchanged 
and the pseudo-flux becomes identical to the real flux. 

NUMERICAL RESULTS 

We first test the Reed’s problem [10] to demonstrate 
the viability of the proposed approach. The Reed’s problem 
is a 1D heterogeneous source problem that consists of 5 
regions. One region (Region 3) is void. The first and 
second region contains pure absorbers. The constant 
sources were distributed in Region 1 and 3. The problem 
was imposed with the reflective boundary condition on the 
left side and vacuum boundary condition on the right side. 
More detailed configuration and flux solution of Reed’s 
problem is shown in Fig. 3. Here our solution was 
compared against the analytic solution provided by Warsa 
[4] and the agreement is up to the machine error (e.g., 1E-
14) between the two solutions, which indicates the high
accuracy of the solution produced by our approach.

Figure 3. The solution of the Reed’s problem. 

The second model problem tested is the so-called Iron-
Water problem originally proposed by Larsen [11]. It is a 
four-region heterogeneous problem consisting of diffusive 
materials with linear scattering anisotropy. The 
configuration of the problem and the flux solution of our 
approach comparing to a corrected Warsa’s solution [12] is 
shown in Fig. 4. As can be seen, the absolute deviation of 
the point-wise flux from the two codes remains in a level 
of 1E-10. The level of agreement degrades in this problem 
mainly due to the reduced accuracy of eigenvalues and 
eigenvectors calculated in our Matlab code owing to the 
highly scattering materials. A high precision eigen- 
decomposition will improve the solution.  

Figure 4. The solution of the Iron-Water problem. 
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