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Introduction
• Analytic techniques for one-dimensional (1D) transport problems can produce extremely 

accurate benchmark solutions with no spatial errors.
• Analytic transport solution provides an efficient means to verify new proposed numerical 

spatial discretization approaches for transport method development.
• Highly accurate 1D solutions can benefit the development of nodal transport methods which 

use the transverse integration approach to convert the multi-dimensional transport equation 
to a set of coupled 1D ones [1].

• Analytic solution for the 1D monoenergetic Sn neutron transport equation in slab geometry, 
has been frequently visited by many researchers over the last few decades [1-5]. 

• Most recently, Wang et al. employs an eigen-decomposition procedure of the transport-
scattering operator in the Sn equation and yields a closed form of analytic solution [6]. This 
idea may bear some similarities to some former work [7, 8], and has the same essence as the 
analytic approach recently proposed by English and Wu [9].
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1D Monoenergetic Sn Transport Equation
• With standard notations, the monoenergetic Sn transport equation in 

slab geometry with homogeneous media and constant external neutron 
source is written as

𝜇𝜇𝑚𝑚
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2
, 

where 𝑚𝑚 = 1,⋯ ,𝑁𝑁.

• 𝜙𝜙𝑙𝑙 𝑥𝑥 is the angular flux moment given by

𝜙𝜙𝑙𝑙(𝑥𝑥) = �
𝑚𝑚′=1

𝑁𝑁
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1D Sn Equation – Matrix-Vector Form
• The Sn equation can be written into a matrix-vector form

)𝑑𝑑𝛙𝛙(𝑥𝑥
𝑑𝑑𝑑𝑑

+ 𝐀𝐀𝐀𝐀(𝑥𝑥) = 𝐛𝐛
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4

1 1

2 2

( ) 1/
( ) 1/

( ) ,       
2

( ) 1/N N

x
x Qx

x

ψ µ
ψ µ

ψ µ

   
   
   = =
   
   
   

ψ b
 

1 1 1 1 2 2 1
0 0 01 1 1

2 1 1 2 2 2
0 02 2 2

1 2 1 1 2 1 1 2 1( ) ( ) ( ) ( ) ( ) ( )
2 2 2

1 2 1 1 2 1 1 2( ) ( ) ( ) ( )
2 2

L L L

t sl l l sl l l sl l N l N
l l l

L L

sl l l t sl l l
l l

l l lP w P P w P P w P

l l lP w P P w P

µ µ µ µ µ µ
µ µ µ

µ µ µ µ
µ µ µ

= = =

= =

+ + +     Σ − Σ − Σ − Σ     
     

+ + +   − Σ Σ − Σ −   =    

∑ ∑ ∑

∑ ∑A



 2
0

1 1 2 2
0 0 0

1 ( ) ( )
2

1 2 1 1 2 1 1 2 1( ) ( ) ( ) ( ) ( ) ( )
2 2 2

L

sl l N l N
l

L L L

sl l N l sl l N l t sl l N N l N
l l lN N N

P w P

l l lP w P P w P P w P

µ µ

µ µ µ µ µ µ
µ µ µ

=

= = =

 
 
 
  Σ  

  
 
 
 + + +   − Σ − Σ Σ − Σ    

    

∑

∑ ∑ ∑

   





Boundary Conditions

• For a slab with a size of X cm, the left and right boundary conditions (if non-
reflective) can be generally described as follows, respectively

𝜓𝜓𝑚𝑚𝐿𝐿 = 𝜓𝜓𝑚𝑚(0) = 𝑓𝑓𝑚𝑚 , for 𝜇𝜇𝑚𝑚 > 0,
𝜓𝜓𝑚𝑚𝑅𝑅 = 𝜓𝜓𝑚𝑚(𝑋𝑋) = 𝑔𝑔𝑚𝑚 , for 𝜇𝜇𝑚𝑚 < 0.

where fm and gm are prescribed incident fluxes on the outer boundaries.
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Eigen-Decomposition Procedure
• Suppose the matrix A is diagonalizable, then it can be decomposed 

with the standard eigen-decomposition procedure
𝐀𝐀 = 𝐑𝐑𝐑𝐑𝐑𝐑−1

• The original transport equation becomes
)𝑑𝑑𝛙𝛙(𝑥𝑥

𝑑𝑑𝑑𝑑 + 𝐑𝐑𝐑𝐑𝐑𝐑−1𝛙𝛙(𝑥𝑥) = 𝐛𝐛

• Define a pseudo-angular flux vector 
𝛗𝛗 = 𝐑𝐑−1 𝛙𝛙

• The transport equation is re-written as
)𝜕𝜕𝜕𝜕(𝑥𝑥

𝜕𝜕𝑥𝑥 + 𝚲𝚲𝚲𝚲(𝑥𝑥) = 𝐑𝐑−1𝐛𝐛
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Wang’s Closed Form Solution

where I is the identity matrix and 1 is a vector with all elements be one, the minus and plus 
superscripts in angular fluxes stand for fluxes with positive and negative ordinates in the Sn equation. 

• The undetermined vector 
𝛗𝛗𝑅𝑅
−

𝛗𝛗𝐿𝐿
+ appearing in the solution are the formal boundary values of the 

pseudo-fluxes. This vector, which can be determined by physical boundary conditions, makes the 
closed form solution interesting because it is the only unknown in the solution and the two 
elements contained in the vector appears at different physical location of the problem.
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Extension of the 1D Analytic Solution

• Deal with heterogeneous conditions
• Eliminate iterations on interfacial Fluxes
• Incorporate reflective boundary conditions
• Include void region situations
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Heterogeneous Conditions

The analytic solution can be written into following two equations (for both regions)
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For illustration, a two-region problem is 
shown in the left figure, where the 
unknowns (i.e., the pseudo-flux vector) for 
each region are indicated with red color. 

Define: 
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Four Equations for the Two-Region Example

1. At the left boundary (x = L), if the incoming flux (𝛗𝛗𝐿𝐿
+) is known, we have

2. At the right boundary (x = R), the equation can be developed similarly

3. At the interface of the problem (x = I), if we set x = XA to the analytic solution at Region A, 
and x = 0 to the analytic solution at Region B, we obtain the two sets of angular flux 
solution at the interface. Using the flux continuity condition at the interface, we obtain
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Incorporate Reflective Boundaries
1. If the left boundary (x = L) is reflective, we have

2. If the right boundary (x = R) is reflective, we have

3. At the interface of the problem (x = I), if we set x = XA to the analytic solution at Region A, 
and x = 0 to the analytic solution at Region B, we obtain the two sets of angular flux 
solution at the interface. Using the flux continuity condition at the interface, we obtain
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T is a mirror reflective matrix: 𝛙𝛙𝐿𝐿
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Account for Void Regions

• For a void region, the analytic solution is essentially reduced to 
the following form

)𝛙𝛙−(𝑥𝑥
)𝛙𝛙+(𝑥𝑥 = 𝐑𝐑

𝛗𝛗𝑅𝑅
−

𝛗𝛗𝐿𝐿
+

where the eigenvector matrix R is really degraded to an identity 
matrix, which indicates the flux stays unchanged and the pseudo-flux 
becomes identical to the real flux.
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Numerical Example 1
• Reed’s problem [Ref.]

• Reflective boundary on the left and vacuum boundary on the right 
side.

Region 1 Region 2 Region 3 Region 4 Region 5

𝛴𝛴𝑡𝑡 [cm-1] 50 5 0 1 1

𝛴𝛴𝒔𝒔 [cm-1] 0 0 0 0.9 0.9

𝑸𝑸 [scale] 50 0 0 1 0

x [cm] 0 ≤ 𝑥𝑥 < 2 2 ≤ 𝑥𝑥 < 3 3 ≤ 𝑥𝑥 <5 5 ≤ 𝑥𝑥 <6 6 ≤ 𝑥𝑥 ≤8

13

W.H. REED, “New difference schemes for the neutron transport equation,” Nucl. 
Sci. Eng. 46, 309 (1971).



Numerical Example 1 - Result
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J. S. WARSA, “Analytical Sn 
Solutions in Heterogeneous Slabs 
Using Symbolic Algebra 
Computer Programs” Annals of 
Nuclear Energy, 29, 851 (2002).



Numerical Example 2
• Iron-water problem [Ref.]

• Reflective boundary on the left and vacuum boundary on the right 
side.

Region 1 Region 2 Region 3 Region 4

𝛴𝛴𝑡𝑡 [cm-1] 3.33 3.33 1.33 3.33
𝒄𝒄 0.994 0.994 0.831 0.994

𝛴𝛴𝒔𝒔𝒔𝒔 [cm-1] 0.9256 0.9256 0.0367 0.9256
𝑸𝑸 [scale] 1 0 0 1

x [cm] 0 ≤ 𝑥𝑥 < 2 2 ≤ 𝑥𝑥 < 3 3 ≤ 𝑥𝑥 <5 5 ≤ 𝑥𝑥 <6

15
E.W. Larsen, “On numerical solutions of transport problems in the diffusion 
limit,” Nucl. Sci. Eng. 83, 90 (1983).



Numerical Example 2 - Result
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J. S. WARSA, “Analytical Sn 
Solutions in Heterogeneous 
Slabs Using Symbolic Algebra 
Computer Programs” Annals of 
Nuclear Energy, 29, 851 
(2002).



Future Perspectives
• Incorporate distributed source (i.e., the region 

source has spatial dependency)
• Cylindrical or spherical geometry
• More efficient way to solve for boundary and 

interfacial angular fluxes
• Extend to k-eigenvalue problem
• Etc.
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Questions?!

• Is matrix A always diagonalizable?
• Similarity and difference of this method 

comparing to response matrix method (RMM)?
• Computational cost and efficiency when 

approaching bigger multi-region problems?
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Thanks for your time

Questions?
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