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MG Discrete Ordinates (SN) 1D Transport Equation

• Advantages
– k-eigenvalue transport problem can be solved using power iteration
– Demonstrates convergent behavior with small mesh sizes
– Various boundary conditions require simple treatments

• Disadvantages
– The source iteration with standard transport sweeping technique to solve for the flux is time-

inefficient
– Matrix instabilities with highly diffusive media (negative eigenvalues, high condition number)
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One-Group SN Equations
1. Define the angular flux moment coupled to the first equation

2. Consider the equation with angular flux moment order  l=1 and define the fission term 
as a known source

3. Reduce to one-group by dropping g subscripts, where N is the quadrature order  and 
assume homogenous materials and a simple domain 

4. Here, the flux term was replaced with its Gauss-Legendre components. We then have 
the set of equations with the scattering kernel separated from the scalar flux. 
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Forming the Coefficient Matrix (1/2)

1. Write the One-Group SN Equation in a vector-matrix form as follows

2. Where the vectors 𝛙𝛙(x) and b are respectively 

3. Lastly, we form the Coefficient Matrix by combining righthand components in the 
modified One-Group SN Equations
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• The Coefficient Matrix is as follows:

• If only isotropic scattering considered, it becomes

2
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Semi-Analytic Solution (1/2)

• By decoupling the scattering terms from the angular flux vector, we can 
now linearly transform flux vector into the eigenspace of the matrix A

• The vectors 𝛙𝛙(x) and b can be written in terms of the basis-vector u

• The coefficients           are to be determined. This is a dummy term and 
has no physical meaning. Substitution yields
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• Rearrangement leaves a set of First-Order ODE’s

• Because um are independent basis vectors of the eigen-space of A, the 
equations hold iff

• These decoupled equations are linked to only one respective ordinate 
or angular flux component, and can be individually solved with 
analytical techniques.
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ODE Solution and Boundaries

• In 1D Slab-Geometry, boundary conditions require known incident flux 
components at slab edges -> Also directionally dependent (±µ)

• The subscripts R and L denote the Right and Left boundary components

• “Semi-Analytic” refers to the discrete directional components, but analytical 
solution in space (x)
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Formation of the Scalar Flux

• The real angular flux is a linear combination of abscissa weights and the 
dummy angular flux components 

• Substituting this into the definition of the scalar flux

• Defining a dummy variable for simplicity

• The scalar flux becomes a simple summation of components 
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Incident Flux and ‘Boundary Iteration’

• The solution requires solving for N/2 unknown components of 𝛙𝛙(x) at 
boundaries and region interfaces. The simple inverse transformation allows 
for conversion between     and 𝛙𝛙

• Using this, we can guess the unknown components of the incident flux and 
iterate by replacing the guesses with values of 𝛗𝛗 found analytically 

1−=φ u ψm m

𝛗𝛗

Sample mesh with incident flux components
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Boundary Iteration vs Source Iteration

• Power Iteration methods with DD schemes, for instance, require a standard 
Transport Sweep to converge on a solution

• The Semi-Analytical method proposed only requires iteration on slab 
boundaries and region interfaces, meaning there is a dramatic reduction in 
CPU time, despite the large number of equations being solved

• After converging on boundary values, the analytical solutions can be 
calculated simultaneously.

• With E denoting the eigenvector matrix of a given region (Left and Right), the 
simple interface scheme converges naturally with the boundary iteration
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Pseudocode for the SA Solver

Start of program
Allocate Matrix Storage and Solve for Region Constants 
Beginning of Semi-Analytic Iteration (SA)

Loop on boundaries
Calculate scalar flux at boundary meshes
Check Boundary convergence, update values of 𝛗𝛗

End boundary Loop
Calculate all desired values of scalar flux using converged BC’s
End of SA
End of program
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Flowchart for the SA Solver
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Numerical Analysis (1/2)

• A one-region source problem

• Vacuum B.C. is applied on both sides

Region 1
S [cm-1s-1] 100

𝜎𝜎𝑡𝑡 [cm-1] 2.0

𝜎𝜎𝒔𝒔 [cm-1] 1.8

x [cm] 0 ≤ 𝑥𝑥 < 20
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Scattering 
Ratio c

SA 
Number

SA 
TimeϮ 

[s]

SI 
Number

SI 
TimeϮ

[s]

Relative 
Error*

0.1 3 0.048 9 0.050 8.07E-04
0.5 6 0.067 26 0.095 6.69E-04
0.9 15 0.155 143 0.381 4.04E-04

0.95 32 0.223 275 0.616 3.27E-04
0.99 463 1.005

Ϯ Computations on an Intel i7 7700K w/ 32GB DDR5 RAM
* Relative 2-normalized error between SI and SA flux

• Benchmarked to SI method with same 
mesh size and quadrature order

• Large edge-error typical of SI

Numerical Analysis (2/2)
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Numerical Analysis # 2 (1/2)

• A multi-region source problem w/ anisotropic scattering

• Vacuum B.C. is applied on R.H.S, Incident Flux on L.H.S. so 
that for ( ) 1.0L =ψ 0µ >

Region 1 Region 2 Region 3
S [cm-1s-1] 0 1.0 2.0
𝜎𝜎𝑡𝑡 [cm-1] 1.0 1.0 2.0

𝜎𝜎𝒔𝒔𝒔𝒔 [cm-1] 0.9 0.6 0.8
𝜎𝜎𝒔𝒔𝒔𝒔 [cm-1] 0.8 0.3 0.8

x [cm] 0 ≤ 𝑥𝑥 < 10 10 ≤ 𝑥𝑥 < 17 17 ≤ 𝑥𝑥 ≤ 20
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• Benchmarked to SI method with same 
mesh size and quadrature order

• Convergence Tolerance 

• Natural convergence at interfaces
• Some error at region interfaces
• In this case, SA is ~10x faster than SI

Numerical Analysis (2/2)

710ε −=
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Distinction of Our Derivation

• Simple implementation in 1D case with various conditions
• Uses linear algebra (eigenvalues) and a simple ODE solution
• Bypass time-inefficient transport sweeps and nodal iteration
• Possible to expand to the k-eigenvalue and 2D case
• Analytic characteristic removes spacial discretization errors
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Future Work and Current Issues
• Currently comparing similar methods which involve RTE’s and BNTE’s
• Two Dimensional case is achievable using Gauss-Legendre discretization, 

for cartesian and spherical/cylindrical geometries
• K-eigenvalue criticality and two-group case possible to implement
• Benchmarking using published examples (see Barros & Larsen, 1990) 
• Method requires use of basis-vectors of asymmetric ill-conditioned 

matrix, resulting in negative eigenvalues and divergent behavior with a 
scattering ratio c > 0.97

• Requires work on variable storage optimization to reduce total CPU time
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Summary

• The Semi-Analytical method is a simple solution to the 1D SN
Transport Problem using decoupled linear ODE’s through eigen-
vector expansion of a scattering coefficient matrix

• Solution of the ODE’s are found for the given boundary conditions
• Numerical results are presented to demonstrate the preliminary 

feasibility of the SA Method and subsequent modifications
• Problems and future additions to the project were discussed
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