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Background

e Sodium fast reactor (SFR) is currently
a leading candidate for the next
phase of advanced nuclear reactor
commercial deployment

e Thermal hydraulics in upper plenum
of SFR designs is a major concern —
refined modeling of the region is still
needed

e Key technology gaps are still present
— Thermal mixing
— Thermal stratification
— Thermal striping
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Thermal hydraulic challenges identified in the upper plenum of SFRs (Tenchine).



Thermal Stratification (1/2)

e 3D phenomenon most commonly observed in loss of flow scenarios

—  Such case involves a large pool (upper plenum) with colder fluid entering beneath warmer fluid and the
momentum of the flow is not large enough to overcome buoyant forces

e Differences in fluid densities result in colder more dense fluid flowing in lower
region while upper region remains hot
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Thermal stratification in a protected loss of of scenario (Baglietto et al. 2017).
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Thermal Stratification (2/2)

http://cfbt-us.com/wordpress/?tag=fire-behavior&paged=6
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Thermal stratification has been studied for
many applications
— Solar industry
— Biological sciences
e QOceans and lakes
e Pollutant discharge

— Zone mixing models for enclosure fires

Thermal stratification has been studied in
many designs in the nuclear industry
—  BWR - GE ESBWR

— PWR — Westinghouse AP1000
— HTGR & AHTR



Current Modeling of Thermal a}

Stratification (1/3)
l],.

e 3D Methods —CFD

— Difficulties accurately
predicting rise time

— High computational cost
— Relatively limited geometries
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Thermal stratification simulation for proposed experiment setup (Baglietto et al. 2017).
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Current Modeling of Thermal
Stratification (2/3)

 Most system level codes, such at :u% ]
SAS4A/SASSYS-1, currently employ 0D - Lo i
models (lumped parameter) R = E | O Ve

—  Approximate results and can only handle simple Tr.cn Tr.cn
cases

—  Fast computational time

B e
e Other approaches 10 {7 LOFC one hour lm
—  Japanese Super-COPD — 1D model z E Immt
—  Korea’s SSC-K code has an optional 2D model E‘ s
—  Berkeley’s BMIX++ uses 1D governing equations g
with Lagrangian approach and has been 1 HEHT N Lol

validated but can only handle stably stratified 490 495 500 505 510 515 520

conditions Mixinginthe AHTR buffer pool system Temperature, °C

Temperature profiles in AHTR Buffer Salt Tank, using BMIX++ (Zhao & Peterson, 2010).
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Current Modeling of Thermal
Stratification (3/3)

e Coupling system level codes to CFD
—  THINS Project of the 7" Framework EU Program
—  Still relatively computationally expensive
—  Coupling only the relevant geometrical zones

CATHARE model (CEA) DYN2B model (IRSN) ATHLET model (KIT)
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System code model for a PHENIX benchmark test in THINS project (Bandini).
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SAS4A/SASSYS-1 Stratified Volume
Model (1/2)

. Stage 1: fluid is fully mixed
. Stage 2: temperature and velocity drop — a

= e I boundary layer is formed at the outlet of the
T 1 al

_1” I e = core
- 4 Hrm * e - 1, "“H“z‘“"’z .

KX PP e rhE e [RAUNAC: . «  Stage 3: liquid fills a quarter of the volume of

sC ayr P . .
| T o Zlayr | R the layer formed in Stage 2, causing the
> . ; : o
tago . futy b, 4 lyer Smoziy i dtecus  Simedbmnemunecen  Swescwestsemsmes interface to rise while the plume entrains liquid
plame eight < Zayra envainmerd fom ajer2aiZayy from the interface into the first layer

Tp <(Tgct + Tgep2
e Case 3.1: liquid entering the region is
cooler than the bulk temperature

Ztop g, 2
Tsc2 ~ T Tsot P Tselyw, o °p . . . .
= o o | = "FF- = — A —[?'H’ | e e Case 3.2: liquid entering the plenum is
! ) \ e qH #"|_H_|T1 oy - ‘ﬂ‘: oy hotter than the bulk temperature
Tset s b Zg se Ziayr
| ’ " | ™ e T }* ! . In stage 4 and 5 three layers are developed-
, Sirage 5, case 52, 3 layors nortaces  Stage’,case 5.9, 3 layers, mertaces these stages occur later in the transient and
o Tasay anvsimon sl e * o, Ty (Tagy + Tocd2 hotoulel o e Lyt o mies 7m0 o 1oy aning rom Iv if th
mr;erfaczc?plum:cfelghi¢zt coolant'gais toicherhs;gr, e'ntrnlnsfrom th!l'"ougﬁ.alsoenigainingfrom IayerSatqaym layers 1’agnd2nsitypass:esthr0ugh On y I t e Core OUtlet temperatu re Starts OUt
P the lower layer as It passes through Teca + Tsca > 2Tp > Toct * Taca T (a2 + Toca)® rising and later falls, or vice versa
Stratified volume stages from SAS4A/SASSYS-1 Ig;;’;‘;:t‘jrt:mperat”re=°°re outlet . If the coolant inlet into the volume is horizontal
User’s Manual (Fanning). T, = temperature in layer i (as in the case with the discharge from the IHX
z,,, = elevation at top of plenum ;
z,a;i=interface elevation at bottom of layer i Into the COId pOOI) Only Stages 1’ 3’ and S are
used.
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SAS4A/SASSYS-1 Stratified Volume
Model (2/2)

Lorenz and Howard’s Model Yang’s Jet Penetration Distance
e Modified Baine’s correlated entrainment e Correlates penetration distance as a function
data for jets and plume of the Froude number
e 2 L e States simplified one-dimensional approach
7 (;}) - a(Rl]) provides satisfactory prediction and is

currently used in SAS4A/SASSYS-1

e  Currently used in PRIMAR-4
y — = 1.0484Fr{78>

e Pointed out possible dependency of the . Menti theorios f et f
Peclet number not used in their madeling entions several theories Tor prediction o
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SAS4A/SASSYS-1 ABTR
and Shortcomings

e  This project is examining the ABTR design which has
previously been modeled in SAS4A/SASSYS-1 using
the existing stratified volume model

. Channel Region:

Inner Core

Middle Core

Outer Core

Reflectors and Test Assemblies

Noe W

Peak Inner Core Channel

. In order to change the ULOF input deck to a PLOF
scenario, 23.87 S was inserted into the core at one
second and left inserted for the remainder of the
calculations (from ABTR report as control rod
worth)
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Conceptual Design Report.
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SAS4A/SASSYS-1 ABTR Example and
Shortcomings — Unprotected Loss of Flow

ULOF Transient Temperature for CH 5
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SAS4A/SASSYS-1 ABTR Example and
Shortcomings — Protected Loss of Flow

PLOF Transient Temperatures
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Other Modeling Efforts

 Nuclear Energy’s Advanced Modeling and Simulation (NEAMS) is developing System
Analysis Module (SAM) out of Argonne National Laboratory

—  SAM utilizes reduced-order three-dimensional modeling techniques to address thermal mixing

e Machine learning techniques can be very useful to develop reduced order models
(ROMs) to alleviate computational expense in modeling and simulation of complex
3D phenomenon such as thermal stratification

—  Currently used often to improve computational cost of CFD
—  Could be combined with ROM methods to improve system level codes

HENEAMS

NUCLEAR ENERGY ADVANCED MODELING & SIMULATION PROGRAM

M MOOSE

Graphical illustration of model order reduction (Schilders).
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Future Work of This Project

e Goal of this project is to couple system code
model, CFD results, and experimental results to
define a way to accurately predict thermal
stratification

e Experimental results will be compared with
both CFD simulations and the model developed
by our team. If the model is successful it will be
implemented into SAS4A/SASSYS-1, or other
system codes requiring improved models...
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Conclusions

e Computational modeling is an indispensable tool however prohibitively high
computational costs make it not feasible for all applications

e AO0OD/1D approach seems like a sensible approach and will be further explored

— A 2D approach will not be completely eliminated at this point, and further research into this option
will be done

— ROM methods will be further

e QOver the next year,
— Begin developing model
— Work on code construct
— Inform developed model based on experimental and CFD results
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Thoughts?
Questions?

Thank You!

18



	Thermal Stratification Modeling for Sodium-Cooled Fast Reactors: A Status Update���
	Background
	Thermal Stratification (1/2)
	Thermal Stratification (2/2)
	Current Modeling of Thermal Stratification (1/3)
	Current Modeling of Thermal Stratification (2/3)
	Current Modeling of Thermal Stratification (3/3)
	SAS4A/SASSYS-1 Stratified Volume Model (1/2)
	SAS4A/SASSYS-1 Stratified Volume Model (2/2)
	SAS4A/SASSYS-1 ABTR Example and Shortcomings
	SAS4A/SASSYS-1 ABTR Example and Shortcomings – Unprotected Loss of Flow
	SAS4A/SASSYS-1 ABTR Example and Shortcomings – Protected Loss of Flow
	Other Modeling Efforts
	Future Work of This Project
	Conclusions
	Acknowledgements
	References
	Slide Number 18

