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ABSTRACT 
 

This paper proposed a modified form of the Self Adjoint Angular Flux (SAAF) equation with 
the objective to make the resulting 2nd order transport equation fully compatible to problems 
with void regions, which remains as an inherent flaw for the conventional SAAF equation. 
The modified SAAF equation can be solved using source iteration and requires only the 
solution of an independent set of 2nd self-adjoint and conservative equation for each direction 
during each source iteration. The validity of the modified SAAF equation are preliminary 
verified with two one-dimensional one-group transport test problems with fixed sources, in 
which the modified SAAF equation is numerically solved using the SN method in conjunction 
with a linear-continuous finite element method (CFEM) in space. The results of CFEM in both 
test problems show an accuracy above 90% with comparison to reference solutions. These 
results indicate the modified SAAF equation is an alternative candidate of the 2nd transport 
equation to deal with void problems. 

 
KEYWORDS: Neutron Transport Equation, SAAF, Finite Element Method 
 
 

1. INTRODUCTION 
 
The steady-state first-order monoenergetic neutron transport equation with an isotropic scattering and an 
isotropic external source can be written as follows 

 ψ σ ψ σ φ
π π

Ω⋅∇ Ω + Ω = +
1 1

( , ) ( ) ( , ) ( ) ( ) ( )
4 4t sr r r r r S r ,  (1) 

where σ  stands for macroscopic cross-section rather than microscopic cross-section and the rest of the 
notations are standard in reactor physics realm. For simple notations, we can represent the source terms as 
a single term 

 σ φ
π π

= +
1 1

( ) ( ) ( ) ( )
4 4sQ r r r S r ,  (2) 

such that Eq.(1) becomes 
 ψ σ ψΩ⋅∇ Ω + Ω =( , ) ( ) ( , ) ( )tr r r Q r   (3) 
 
To derive the Self-Adjoint Angular Flux (SAAF) transport equation, one typically write Eq.(3) into the 
following form 
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 [ ]ψ ψ
σ

Ω = −Ω⋅∇ Ω
1

( , ) ( ) ( , )
( )t

r Q r r
r

,  (4) 

and substitutes it into the angular flux streaming term [i.e., ψΩ⋅∇ Ω( , )r ] in Eq.(3) to yield (with a little 
manipulation) 

 [ ]ψ σ ψ
σ σ

−Ω⋅∇ Ω⋅∇ Ω + Ω = −Ω⋅∇
1 ( )

( , ) ( ) ( , ) ( )
( ) ( )t

t t

Q r
r r r Q r

r r
 , (5) 

By using the following identity 

 ψ ψ ψ
σ σ σ
    ΩΩ

Ω⋅∇ Ω⋅∇ Ω =∇⋅ ΩΩ⋅∇ Ω =∇⋅ ∇ Ω   
   

1 1
( , ) ( , ) ( , )

( ) ( ) ( )t t t

r r r
r r r

,  (6) 

we can rewrite Eq.(5) as the follows 

 ψ σ ψ
σ σ
ΩΩ

−∇⋅ ∇ Ω + Ω = −Ω⋅∇
( )

( , ) ( ) ( , ) ( )
( ) ( )t

t t

Q r
r r r Q r

r r
.  (7) 

Eq.(7) is usually referred to as the standard SAAF equation [1], which has a long standing issue when 
applying to problems with void regions because the inverse total cross section term appears in the equation 
[2-4]. In this paper we propose a modified form for the SAAF equation that avoids the appearance of the 
inverse total transport cross section term with the purpose to make the SAAF equation universally 
applicable to problems with void regions.  
 

2. A MODIFIED FORM OF THE SAAF TRANSPORT EQUATION 
 
To obtain a SAAF equation without the inverse total cross section term, we manipulate Eq.(1) in a 
different way. Instead of representing Eq.(1) as the form of Eq.(4), we write it as the following form 

 σ ψ ψΩ = −Ω⋅∇ Ω( ) ( , ) ( ) ( , )t r r Q r r .  (8) 

Meanwhile, we manipulate Eq.(1) a little bit to make the σ ψ Ω( ) ( , )t r r  term appear in the streaming term 
as a whole in the transport equation by multiplying σ ( )t r  at both sides of the equation 

 σ ψ σ ψ σΩ⋅∇ Ω + Ω =2( ) ( , ) ( ) ( , ) ( ) ( )t t tr r r r r Q r .  (9) 

With the notice of the following identity  

 [ ] [ ] [ ]σ ψ σ ψ ψ σΩ⋅∇ Ω = Ω⋅∇ Ω + Ω Ω⋅∇( ) ( , ) ( ) ( , ) ( , ) ( )t t tr r r r r r .  (10) 

Eq.(9) can be written as the following form 

 [ ]σ ψ σ σ ψ σ Ω⋅∇ Ω + −Ω⋅∇ Ω = 
2( ) ( , ) ( ) ( ) ( , ) ( ) ( )t t t tr r r r r r Q r .  (11) 

By inserting Eq.(8) into Eq.(11), we get 

 [ ]ψ σ σ ψ σ −Ω⋅∇ Ω⋅∇ Ω + −Ω⋅∇ Ω = −Ω⋅∇ 
2( , ) ( ) ( ) ( , ) ( ) ( ) ( )t t tr r r r r Q r Q r .  (12) 

Eq.(12) is a modified form for the original SAAF transport equation [Eq.(7)]. Comparing to Eq.(7), the 
terms with inversed total cross section disappeared from this equation without losing the general quality 
of the 2nd transport equation. However, an additional term representing the total cross-section derivative 
[i.e., σ∇ ( )t r ] appears in the collision term in the modified equation. This term actually will pose some 
challenges in numerically solving the modified SAAF equation. We will elaborate this in Section 4.  

 
Eq.(7) is really a one-group SAAF formulation that is appropriate for source iteration computation 
scheme with the SN method for the angular variable [1]. The operator on the left side of the equation is 

1288



Reactor Physics paving the way towards more efficient systems 
 

Proceedings of the PHYSOR 2018, Cancun, Mexico 

self-adjoint and positive-definite though the equation as a whole is not self-adjoint [2]. This property can 
be extended to the multigroup case straightforwardly. Eq.(12) essentially preserves the self-adjoint feature 
of Eq.(7)  because the operator on the left side of the Eq.(12) has the same characteristics as that of the 
Eq.(7) if one noticed the derivative operator in the second term only operates on the total cross section. 
The only disadvantage of the Eq.(7) is that it lacks of conservative property and has only a non-
conservative analytic form. This may not considered as a big issue since we mainly use this scheme in 
reactor physics calculations in which the variation of the solution is well-resolved by the mesh [2]. 
 
Without previous awareness, the authors later realized the Modified form of SAAF, Eq.(12), is actually 
identical to the so-called ‘least-square’ formulation of the 2nd order neutron transport equation [2, 4]. In 
this regard, this paper provides an alternative way to derive the least-square form transport equation, in 
which we use a purely algebraic technique that is more straightforward and simpler than that in Ref. 2.  
 

3. NUMERICAL METHODS TO SOLVE THE MODIFIED SAAF TRANSPORT EQUATION 
 
For demonstration, we consider the modified SAAF equation in a monoenergetic form with one-
dimensional slab geometry 

 µ ψ µ σ µ σ ψ µ σ µ∂  − + − = − ∂  

2
2 2

2 ( , ) ( ) ( ) ( , ) ( ) ( ) ( )t t t
d d

x x x x x Q x Q x
x dx dx

   (13) 

The discrete ordinate (e.g., SN) form of the equation is given as 

 µ ψ σ µ σ ψ σ µ∂  − + − = − ∂  

2
2 2

2 ( ) ( ) ( ) ( ) ( ) ( ) ( )m m t m t m t m
d d

x x x x x Q x Q x
x dx dx

  (14) 

where the subscribe m stands for one polar angle in the neutron transport direction.  
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Figure 1. Spatial discretization configuration for the slab geometry. 
 
The spatial discretization configuration of the slab geometry shown in Fig. 1 can be implemented on Eq. 
(13) in two distinct ways: (a) directly apply it on the Eq.(14); or (b) apply the SN discretization to the first-
order form of the transport equation [Eq.(1)] and then derive a modified SAAF discretization via the same 
algebraic procedure as shown in Section 2. It needs to mention that the modified SAAF with the second 
procedure is really derived from the first order form of the transport equation. The first procedure is referred 
to the direct procedure and the latter as the indirect procedure. 
 
The continuous linear finite element method (CLFEM) scheme for the modified SAAF equation can be 
obtained via the SN discretization in a similar way as described in Morel’s paper [1]. However, in this work 
the discretization is performed directly over the Eq. (12) instead of the Eq. (7). For simplicity, the lumped 
version of the linear-continuous finite element method is first considered for the discretization scheme. 
Then the indirect procedure is applied on the modified SAAF equation. 
 
3.1 LUMPED CONTINUOUS FINITE ELEMENT METHOD (LCFEM) 
 
With the assumption of piece-wise constant material property, and following Ref. 1, we can obtain the 
following schemes for the modified SAAF equation:  
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 The equation for all the cell-edge flux angular fluxes except those on the left ( = 1/2x x  ) and right 
( += 1/2Ix x ) boundaries is:  

 ( )ψ ψ ψ σ µ− + +− + + + +++ + = ∆ − −1 1 3 1 1 1
2 2 2 2 22

, 1 , , 1 1, ,,i i i i i i m i ii m i t i i im iA A A Q x Q Q  , (15) 

where  

 ( )µ µ µ µσ µ σ σ− + ++ +
+ +

= − = + + ∆ − − = −
∆ ∆ ∆ ∆

1 1
2 2

2 2 2 2
2

, 1 , , 1 , , 1,
1 1

,   ,   m m m m
i i i i m t i t i i it i i

i i i i

A A x A
x x x x

, (16) 

and  

 
σ σ

σ + + + + +
+ + +

+ +

∆ + ∆ ∆ + ∆ ∆ +∆
= = ∆ =

∆ +∆ ∆ +∆
1 1 1
2 2 2

, 1 1 , 1 1 1
,

1 1

,   ,   
2

t i i t i i i i i i i i
t i i i

i i i i

x x Q x Q x x x
Q x

x x x x
. (17) 

 
The cross section derivative term σ /td dx in Eq.(14) is approximated with the first order finite difference 
scheme, that is 

 
σ σσ +

+

−
≈

∆ 1
2

, 1 ,t i t it

i

d
dx x

 . (18) 

 The equation for ψ 1
2,m  (i.e, the i=0 node) is 

 ψ ψ µ σ ψ σ µ∆
+ − = −1 3

2 2

1
0,0 0,1 ,1 , ,1 1 1, , 2m t m L t mm m

x
A A Q Q  , (19) 

where 

 µ µσ= + ∆ = −
∆ ∆

2 2
2

0,0 ,1 1 0,1
1 1

1
,   

2
m m

tA x A
x x

, (20) 

Here, ψ ,m L  is the angular flux at the left cell-edge with different values for incoming and outgoing 
directions 

 
µ

ψ ψ µ
>=  < 1

2

,
,

         0
     0

m m
m L

mm

f
 , (21) 

where for a source condition mf  denotes the incident flux, for a vacuum condition mf =0, and for a 
reflective condition 1

2
( )m mf ψ µ= − . 

Two assumptions are considered at the this cell 
 σ σ= =1 1

2 2
,1 1, ,   tt Q Q  . (22) 

 The equation for ψ + 1
2,m I  (i.e., the i=I node) is 

 ψ ψ µ σ ψ σ µ− − +

∆
+ + = +1 1

2 2
, 1 , , , ,, , 2

I
I I I I m t I m R t I I m Im I m I

x
A A Q Q  , (23) 

where 

 µ µ σ− = − = + ∆
∆ ∆

2 2
2

, 1 , ,
1

,   
2

m m
I I I I t I I

I I

A A x
x x

 , (24) 

And ψ ,m R  is defined as follows 

 
ψ µ

ψ
µ

+ >= 
<

1
2,

,

      0

,           0
mm I

m R
m mf

 . (25) 
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Where for a source condition mf  denotes the incident flux, for a vacuum condition mf = 0, and for a 
reflective condition ψ µ+= −1

2
( )m mIf . Here we assume at the cell I 

 σ σ+ += =1 1
2 2

,, ,      t I It I IQ Q  . (26) 

The spatial discretization schemes used in Eq.(15), (19) and (23) are referred to as a lumped linear-
continuous finite element method (LCFEM), in which the standard finite element equations are lumped by 
replacing three-point cell edge removal term with one-point terms. This results in a more robust (i.e., more 
positive) discretization at the cost of accuracy. Although both the lumped and standard equations are 
second-order accurate, the error is nonetheless larger for the lumped scheme in the thin-mesh limit [1].  
 
3.2 STANDARD CONTINUOUS FINITE ELEMENT METHOD (SCFEM) 
 
The standard continuous finite element method (SCFEM) discretization can be obtained from the lumped 
version by making the following substitution: For the removal term in the internal cell, 

 σ ψ σ ψ ψ σ ψ ψ +
++ + + − + + +

∆ ∆   ∆ ← + + +   
   

1 1 1 1 1 1 3
2 2 2 2 2 2 2

2 2 2 1
, , 1, , , , , ,

1 2 2 1
3 3 2 3 3 2

i i
t i t it i m i i m i m i m i m i

x x
x  . (27) 

For the left boundary cell 

 σ ψ σ ψ ψ∆ ∆ ← + 
 

1 1 3
2 2 2

2 21 1
,1 ,1, , ,

2 1
2 3 3 2t tm m m

x x  . (28) 

For the right boundary cell 

 σ ψ σ ψ ψ+ − +

∆ ∆ ← + 
 

1 1 1
2 2 2

2 2
, ,, , ,

1 2
2 3 3 2

I I
t I t Im I m I m I

x x  . (29) 

Consequently, we get the following SCFEM schemes for the modified SAAF equation 

 The equation for all the cell-edge angular fluxes in the internal is  
 ( )ψ ψ ψ σ µ− + +− + + + +++ + = ∆ − −1 1 3 1 1 1

2 2 2 2 22
, 1 , , 1 1, ,,i i i i i i m i ii m i t i i im iA A A Q x Q Q  , (30) 

where 

 ( ) ( )

µ σ

µ µ σ σ µ σ σ

µ σ

−

+ + +
+

+ + +
+

= − + ∆
∆

= + + ∆ + ∆ − −
∆ ∆

= − + ∆
∆

2
2

, 1 ,

2 2
2 2

, , , 1 1 , 1 ,
1

2
2

, 1 , 1 1
1

1
,

6

1
,

3

1
.

6

m
i i t i i

i

m m
i i t i i t i i m t i t i

i i

m
i i t i i

i

A x
x

A x x
x x

A x
x

 (31) 

 The equation for ψ 1
2,m  is 

 ψ ψ µ σ ψ σ µ∆
+ − = −1 3

2 2

1
0,0 0,1 ,1 , ,1 1 1, , 2m t m L t mm m

x
A A Q Q  , (32) 

where 
µ µσ σ= + ∆ = − + ∆
∆ ∆

2 2
2 2

0,0 ,1 1 0,1 ,1 1
1 1

1 1
,   

3 6
m m

t tA x A x
x x

.                                    (33) 

 The equation for ψ + 1
2,m I  is 

 ψ ψ µ σ ψ σ µ− − +

∆
+ + = +1 1

2 2
, 1 , , , ,, , 2

I
I I I I m t I m R t I I m Im I m I

x
A A Q Q , (34) 

where 
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µ µσ σ− = − + ∆ = + ∆
∆ ∆

2 2
2 2

, 1 , , ,
1 1

,   
6 3

m m
I I t I I I I t I I

I I

A x A x
x x

.                                     (35) 

 
 

4. PRELIMINARY RESULTS 
 
To assess the viability of the proposed SAAF form and numerical methods, the aforementioned numerical 
approaches are implemented in a MATLAB code and applied to a couple of one dimensional and one group 
transport problems described in Reference 2. Both of these problems are fixed source problem with a 
purposed designed void region, whereas the first problem (Prob.1) includes pure absorber regions and the 
second problem (Prob. 2) considers the situation where tσ  varies significantly between regions. Both 
problems consider reflecting B.C. on the left side and vacuum B.C. on the right side. The material properties 
and domain size of the two problems are shown in Table I and Table II, respectively. The second test 
problem is really a modified version of the well-known Reed’s problem [5]. As can be seen in Table II, 
significant discontinuities in material properties exist between different regions of the problem.  
 

Table I. Material Properties of the First Problem (Prob. 1). 
 

 Region 1 Region 2 Region 3 

S [cm-1s-1] 1 0 0 

tσ [cm-1] 0.5 0 0.8 

sσ [cm-1] 0 0 0 

x [cm] 0 2.5x≤ <   2.5 7.5x≤ <  7.5 10x≤ ≤  
 
 

Table II. Material Properties of the Second Problem (Prob. 2). 
 

 Region 1 Region 2 Region 3 Region 4 Region 5 

S [cm-1s-1] 100 0 0 0 1 

tσ [cm-1] 100 0 1 5 1 

sσ [cm-1] 0 0 0.9 0 0.9 

x [cm] 0 2x≤ <   2 4x≤ <  4 6x≤ <  6 7x≤ <  7 8x≤ ≤  
 
 
To select a reasonable number of mesh for each region, a quick sensitivity study on the mesh size is 
performed. The maximum absolute relative error percent for the different mesh size from 10 to 1000 for 
Prob.1 and from 10 to 2500 for Prob. 2 are calculated and shown in Fig. 2 and 3, respectively. The numerical 
error used to capture the insensitivity domain in terms of number of mesh is defined as the maximum norm 
of the relative deviation between the reference solutions and the proposed numerical solutions using the 
CFEM method. For Prob. 1, we use analytical solutions as the reference solutions. For Prob. 2, the reference 
solutions are obtained from the difference diamond (DD) scheme on the first order transport equation [6]. 
All calculations consider S6 quadrature set for the angular discretization. It is worth to mention that in Prob. 
2 the mesh number of Region 1 is fixedly set as 190 and only the mesh number for Region 2 to 5 are 
changed according to the sensitivity study (see Fig. 3) because we found the results are nearly insensitive 
the mesh size in Region 1.  
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Figure 2. Relative error (%) and different number of mesh for regions 1 to 3 at Prob. 1. 

 

 
Figure 3. Relative error (%) and different number of mesh for regions 2 to 5 at Prob. 2. 

 
As shown in Fig. 2 and 3, the relative error percent for Prob.1 and Prob. 2 become nearly unchanged after 
mesh number increased to 300 and 2000, respectively. Therefore these numbers are used as the number of 
meshes in the numerical calculations.  
 
The analytical solution of scalar flux for the Prob. 1 is given as follow 

 
σ σ
σ

σ
σ σ σ

− − − + ≤ <

Φ = − ≤ <

− − + − ≤ <

2 ,1 2 ,1

2 ,1
,1

2 ,3 2 ,1 ,3

(2 ( (2.5 )) ( (2.5 ))),                0 2.5
( ) (1 (2 (2.5)),                                                    2.5 7.5

( ( ( 7.5)) (2 (2.5) ( 7.5))),  7.5

a a

a
a

a a a

E x E x x
S

x E x
E x E x x





 10.

  (36) 

where E2 represents the following exponential integral: 

 
∞ −

= ∫2 21

exp( )
( )

xz
E x dz

z
  (37) 
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The solutions as well as relative error (%) between the analytical method and CFEM for Prob. 1 are given 
in Fig. 4. All the results provided in this section for the CFEM are merely obtained the standard one 
(SCFEM) because the lumped scheme gives relatively larger truncation errors due to the thin-mesh limit. 
 

 
Figure 4. Comparison of the scale flux distribution solution for Prob.1 obtained by the analytical method 

and the standard CFEM method on modified SAAF equation. 
 
As shown in Fig. 4, with a refined mesh grid, the CFEM solution to the modified form of the SAAF 
equation reaches the analytical solution with a maximum relative deviation less than 8%, which indicates 
the modified SAAF can undoubtedly handle problems with regions. It can be seen the large errors 
normally appears in interfacial areas for this simple 1-D problem, and because of this effect, the solutions 
adjacent to the interfacial areas usually have larger errors than those far away from the interface regions. 
The errors in the void region exhibit an interesting linear trend characteristic from one region to another. 
All the features in the error curve can be possibly attributed to the low accurate approximation of the 
cross-section derivative term appeared in the modified SAAF equation. Since the material varies in 
regions, the CFEM cannot accurately catch these variations with a high fidelity modeling of the material 
change term in the interface areas. As a result, CFEM fails to provide accurate flux solution in these 
areas. We anticipate the DFEM would be able to demonstrate better results in this regards. 
 
The comparison of the CFEM solution to the Diamond Difference first order transport results for the Prob. 
2 is shown Fig. 5.  
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Figure 5. Comparison of the scale flux distribution solution for Prob. 2 obtained by the DD method on 
standard 1st order transport equation and the standard CFEM method on modified SAAF equation. 

 
The main point of this work is again to provide a modified SAAF equation that demonstrate the capability 
of nuclear flux calculation at the void region. As the Fig. 5 illustrates, the modified SAAF is providing the 
neutron flux with the maximum error ~10%. Therefore, the accuracy of results proves the accomplishment 
of the paper objective, especially at the void region. As shown in Fig. 5, the relative error at the boundary 
of Region 1 and the void area is varying around 10%., and the errors for the rest of regions are less than 
5%. 
 
With the demonstration of these two simple 1-D transport problems, we preliminary conclude the proposed 
modified SAAF can be an alternative and effective approach to calculate neuron flux for problems with 
void regions with some extend of accuracy without facing the incompatibility issue arisen with conventional 
SAAF equation. 
 

5. CONCLUSIONS AND FUTURE EFFORTS 
 
In this paper, we proposed a modified form for the SAAF transport equation to omit the presence of inverse 
cross section with the objective to make the resulting equation be void compatible. To demonstrate the 
viability of the proposed equation, two one-dimension one-group fixed source transport problems were 
solved with standard continues finite element method based on the modified SAAF equation. A quick 
sensitivity study was performed to provide proper mesh sizes for each test problem. The results of the first 
test problem, which has a pure absorber region in the middle, show an accuracy above 92%. The outcomes 
of the second problem, which has different total cross-section at different region, provide a prediction with 
a high accuracy of 95%. These results indicate the proposed modified SAAF equation in this paper can be 
used as an alternative 2nd order transport equation in solving flux for problems with void regions. 
 

1295



Wu et al., A Modified SAAF Transport Equation with Fully Void-Compatible Feature 

Proceedings of the PHYSOR 2018, Cancun, Mexico 

REFERENCES 
 
1. J. E. Morel and J. M. McGhee, “A Self-Adjoint Angular Flux Equation,” Nucl. Sci. Eng., 132, 312-325 

(1999). 
2. J. Hansen, et al, “A Least Squares Transport Equation Compatible with Voids,” Journal of 

Computational and Theoretical Transport, 43, 374-401 (2014). 
3. Y. Wang, et al., “Diffusion Acceleration Schemes for Self-Adjoint Angular Flux Formulation with a 

void Treatment,” Nucl. Sci. Eng., 176, 201-225 (2014). 
4. V. M. Laboure, et al., “Globally Conservative, Hybrid Self-Adjoint Angular Flux and Least-Squares 

Method Compatible with Voids,” Nucl. Sci. Eng., 185, 294-306 (2017). 
5. W. REED, “New Difference Schemes for the Neutron Transport Equation,” Nucl. Sci. Eng., 46, 309-

314 (1971). 
6. E. E. Lewis and J. W. F. Miller, Computational Methods of Neutron Transport, Wiley, Hoboken, New 

Jersey (1984). 
 
 

1296


	A MODIFIED FORM OF THE SAAF TRANSPORT EQUATION WITH FULLY VOID-COMPATIBLE FEATURE
	ABSTRACT
	KEYWORDS: Neutron Transport Equation, SAAF, Finite Element Method
	1. INTRODUCTION
	2. A MODIFIED FORM OF THE SAAF TRANSPORT EQUATION
	3. NUMERICAL METHODS TO SOLVE THE MODIFIED SAAF TRANSPORT EQUATION
	3.1 lumped continuous finite element method (LCFEM)

	4. Preliminary RESULTS
	5. CONCLUSIONS AND FUTURE EFFORTS
	REFERENCES



